流数据中的字符串分析和客户路径

K. Yada
{"title":"流数据中的字符串分析和客户路径","authors":"K. Yada","doi":"10.1109/ICDMW.2008.41","DOIUrl":null,"url":null,"abstract":"This purpose of this study is to propose a knowledge-discovery system that can abstract helpful information from character strings representing shopper visits to product sections associated with positive and negative purchasing events by applying character string parsing technologies to stream data describing customer purchasing behavior inside a store. Taking data that traced customers' movements we focus on the number of times customers stop by particular product sections, and by representing those visits in the form of character strings, we propose a way to efficiently handle large stream data. During our experiment, we abstract store-section visiting patterns that characterize customers who purchase a relatively larger volume of items, and are able to show the usefulness of these visiting patterns. In addition, we examine index functions, calculation time, and prediction accuracy, and clarify technological issues warranting further research. In the present study, we demonstrate the feasibility of employing stream data in the marketing field and the usefulness of the employing character parsing techniques.","PeriodicalId":175955,"journal":{"name":"2008 IEEE International Conference on Data Mining Workshops","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Character String Analysis and Customer Path in Stream Data\",\"authors\":\"K. Yada\",\"doi\":\"10.1109/ICDMW.2008.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This purpose of this study is to propose a knowledge-discovery system that can abstract helpful information from character strings representing shopper visits to product sections associated with positive and negative purchasing events by applying character string parsing technologies to stream data describing customer purchasing behavior inside a store. Taking data that traced customers' movements we focus on the number of times customers stop by particular product sections, and by representing those visits in the form of character strings, we propose a way to efficiently handle large stream data. During our experiment, we abstract store-section visiting patterns that characterize customers who purchase a relatively larger volume of items, and are able to show the usefulness of these visiting patterns. In addition, we examine index functions, calculation time, and prediction accuracy, and clarify technological issues warranting further research. In the present study, we demonstrate the feasibility of employing stream data in the marketing field and the usefulness of the employing character parsing techniques.\",\"PeriodicalId\":175955,\"journal\":{\"name\":\"2008 IEEE International Conference on Data Mining Workshops\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2008.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2008.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是提出一个知识发现系统,该系统可以通过应用字符串解析技术来描述商店内客户购买行为的流数据,从表示购物者访问与积极和消极购买事件相关的产品部分的字符串中提取有用信息。通过追踪客户活动的数据,我们关注客户在特定产品区域停留的次数,并通过以字符串形式表示这些访问,我们提出了一种有效处理大型流数据的方法。在我们的实验中,我们抽象了商店-区域访问模式,这些模式描述了购买相对大量商品的客户,并且能够显示这些访问模式的有用性。此外,我们考察了指标函数、计算时间和预测精度,并澄清了需要进一步研究的技术问题。在本研究中,我们论证了在营销领域使用流数据的可行性以及使用字符解析技术的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Character String Analysis and Customer Path in Stream Data
This purpose of this study is to propose a knowledge-discovery system that can abstract helpful information from character strings representing shopper visits to product sections associated with positive and negative purchasing events by applying character string parsing technologies to stream data describing customer purchasing behavior inside a store. Taking data that traced customers' movements we focus on the number of times customers stop by particular product sections, and by representing those visits in the form of character strings, we propose a way to efficiently handle large stream data. During our experiment, we abstract store-section visiting patterns that characterize customers who purchase a relatively larger volume of items, and are able to show the usefulness of these visiting patterns. In addition, we examine index functions, calculation time, and prediction accuracy, and clarify technological issues warranting further research. In the present study, we demonstrate the feasibility of employing stream data in the marketing field and the usefulness of the employing character parsing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信