懒学习分类器在文本分类中的实证评价

Umar Sathic Ali, C. JothiVenkateswaran
{"title":"懒学习分类器在文本分类中的实证评价","authors":"Umar Sathic Ali, C. JothiVenkateswaran","doi":"10.20894/IJWT.104.001.001.004","DOIUrl":null,"url":null,"abstract":"With the rapid growth of online documents available on the World Wide Web necessitate the task of classifying those documents into semantic categories. Text categorization is the task of automatically classifying the textual documents into a set of predefined categories. In this paper, we report the empirical evaluation of lazy learning classifier such as kNN and its variant like distance weighted kNN and our newly proposed evident theoretic kNN for text categorization task over two benchmark datasets. We observed the superiority of evident theoretic kNN method over others in all experiments we conducted.","PeriodicalId":132460,"journal":{"name":"Indian Journal of Education and Information Management","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An empirical evaluation of lazy learning classifiers for text categorization\",\"authors\":\"Umar Sathic Ali, C. JothiVenkateswaran\",\"doi\":\"10.20894/IJWT.104.001.001.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth of online documents available on the World Wide Web necessitate the task of classifying those documents into semantic categories. Text categorization is the task of automatically classifying the textual documents into a set of predefined categories. In this paper, we report the empirical evaluation of lazy learning classifier such as kNN and its variant like distance weighted kNN and our newly proposed evident theoretic kNN for text categorization task over two benchmark datasets. We observed the superiority of evident theoretic kNN method over others in all experiments we conducted.\",\"PeriodicalId\":132460,\"journal\":{\"name\":\"Indian Journal of Education and Information Management\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Education and Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20894/IJWT.104.001.001.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Education and Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20894/IJWT.104.001.001.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着万维网上可用的在线文档的快速增长,对这些文档进行语义分类的任务成为必要。文本分类是将文本文档自动分类到一组预定义的类别中的任务。在本文中,我们报告了惰性学习分类器kNN及其变体如距离加权kNN和我们新提出的明显理论kNN在两个基准数据集上用于文本分类任务的经验评价。在我们所做的所有实验中,我们都观察到明显的理论kNN方法优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An empirical evaluation of lazy learning classifiers for text categorization
With the rapid growth of online documents available on the World Wide Web necessitate the task of classifying those documents into semantic categories. Text categorization is the task of automatically classifying the textual documents into a set of predefined categories. In this paper, we report the empirical evaluation of lazy learning classifier such as kNN and its variant like distance weighted kNN and our newly proposed evident theoretic kNN for text categorization task over two benchmark datasets. We observed the superiority of evident theoretic kNN method over others in all experiments we conducted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信