精简列表关联模型

Fernando Diaz
{"title":"精简列表关联模型","authors":"Fernando Diaz","doi":"10.1145/2808194.2809491","DOIUrl":null,"url":null,"abstract":"Pseudo-relevance feedback has traditionally been implemented as an expensive re-retrieval of documents from the target corpus. In this work, we demonstrate that, for high precision metrics, re-ranking the original feedback set provides nearly identical performance to re-retrieval with significantly lower latency.","PeriodicalId":440325,"journal":{"name":"Proceedings of the 2015 International Conference on The Theory of Information Retrieval","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Condensed List Relevance Models\",\"authors\":\"Fernando Diaz\",\"doi\":\"10.1145/2808194.2809491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pseudo-relevance feedback has traditionally been implemented as an expensive re-retrieval of documents from the target corpus. In this work, we demonstrate that, for high precision metrics, re-ranking the original feedback set provides nearly identical performance to re-retrieval with significantly lower latency.\",\"PeriodicalId\":440325,\"journal\":{\"name\":\"Proceedings of the 2015 International Conference on The Theory of Information Retrieval\",\"volume\":\"201 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International Conference on The Theory of Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2808194.2809491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Conference on The Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808194.2809491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

传统上,伪相关反馈被实现为从目标语料库中重新检索文档的昂贵方法。在这项工作中,我们证明了,对于高精度指标,重新排序原始反馈集提供了几乎相同的性能,以显着降低延迟的重新检索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Condensed List Relevance Models
Pseudo-relevance feedback has traditionally been implemented as an expensive re-retrieval of documents from the target corpus. In this work, we demonstrate that, for high precision metrics, re-ranking the original feedback set provides nearly identical performance to re-retrieval with significantly lower latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信