Eric Mullen, Daryl Zuniga, Zachary Tatlock, D. Grossman
{"title":"验证窥视孔优化的CompCert","authors":"Eric Mullen, Daryl Zuniga, Zachary Tatlock, D. Grossman","doi":"10.1145/2908080.2908109","DOIUrl":null,"url":null,"abstract":"Transformations over assembly code are common in many compilers. These transformations are also some of the most bug-dense compiler components. Such bugs could be elim- inated by formally verifying the compiler, but state-of-the- art formally verified compilers like CompCert do not sup- port assembly-level program transformations. This paper presents Peek, a framework for expressing, verifying, and running meaning-preserving assembly-level program trans- formations in CompCert. Peek contributes four new com- ponents: a lower level semantics for CompCert x86 syntax, a liveness analysis, a library for expressing and verifying peephole optimizations, and a verified peephole optimiza- tion pass built into CompCert. Each of these is accompanied by a correctness proof in Coq against realistic assumptions about the calling convention and the system memory alloca- tor. Verifying peephole optimizations in Peek requires prov- ing only a set of local properties, which we have proved are sufficient to ensure global transformation correctness. We have proven these local properties for 28 peephole transfor- mations from the literature. We discuss the development of our new assembly semantics, liveness analysis, representa- tion of program transformations, and execution engine; de- scribe the verification challenges of each component; and detail techniques we applied to mitigate the proof burden.","PeriodicalId":178839,"journal":{"name":"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Verified peephole optimizations for CompCert\",\"authors\":\"Eric Mullen, Daryl Zuniga, Zachary Tatlock, D. Grossman\",\"doi\":\"10.1145/2908080.2908109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transformations over assembly code are common in many compilers. These transformations are also some of the most bug-dense compiler components. Such bugs could be elim- inated by formally verifying the compiler, but state-of-the- art formally verified compilers like CompCert do not sup- port assembly-level program transformations. This paper presents Peek, a framework for expressing, verifying, and running meaning-preserving assembly-level program trans- formations in CompCert. Peek contributes four new com- ponents: a lower level semantics for CompCert x86 syntax, a liveness analysis, a library for expressing and verifying peephole optimizations, and a verified peephole optimiza- tion pass built into CompCert. Each of these is accompanied by a correctness proof in Coq against realistic assumptions about the calling convention and the system memory alloca- tor. Verifying peephole optimizations in Peek requires prov- ing only a set of local properties, which we have proved are sufficient to ensure global transformation correctness. We have proven these local properties for 28 peephole transfor- mations from the literature. We discuss the development of our new assembly semantics, liveness analysis, representa- tion of program transformations, and execution engine; de- scribe the verification challenges of each component; and detail techniques we applied to mitigate the proof burden.\",\"PeriodicalId\":178839,\"journal\":{\"name\":\"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2908080.2908109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2908080.2908109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transformations over assembly code are common in many compilers. These transformations are also some of the most bug-dense compiler components. Such bugs could be elim- inated by formally verifying the compiler, but state-of-the- art formally verified compilers like CompCert do not sup- port assembly-level program transformations. This paper presents Peek, a framework for expressing, verifying, and running meaning-preserving assembly-level program trans- formations in CompCert. Peek contributes four new com- ponents: a lower level semantics for CompCert x86 syntax, a liveness analysis, a library for expressing and verifying peephole optimizations, and a verified peephole optimiza- tion pass built into CompCert. Each of these is accompanied by a correctness proof in Coq against realistic assumptions about the calling convention and the system memory alloca- tor. Verifying peephole optimizations in Peek requires prov- ing only a set of local properties, which we have proved are sufficient to ensure global transformation correctness. We have proven these local properties for 28 peephole transfor- mations from the literature. We discuss the development of our new assembly semantics, liveness analysis, representa- tion of program transformations, and execution engine; de- scribe the verification challenges of each component; and detail techniques we applied to mitigate the proof burden.