{"title":"有色路径问题及其应用","authors":"E. Eiben, Iyad A. Kanj","doi":"10.1145/3396573","DOIUrl":null,"url":null,"abstract":"Given a set of obstacles and two points in the plane, is there a path between the two points that does not cross more than k different obstacles? Equivalently, can we remove k obstacles so that there is an obstacle-free path between the two designated points? This is a fundamental NP-hard problem that has undergone a tremendous amount of research work. The problem can be formulated and generalized into the following graph problem: Given a planar graph G whose vertices are colored by color sets, two designated vertices s, t ∈ V(G), and k ∈ N, is there an s-t path in G that uses at most k colors? If each obstacle is connected, then the resulting graph satisfies the color-connectivity property, namely that each color induces a connected subgraph. We study the complexity and design algorithms for the above graph problem with an eye on its geometric applications. We prove a set of hardness results, including a result showing that the color-connectivity property is crucial for any hope for fixed-parameter tractable (FPT) algorithms. We also show that our hardness results translate to the geometric instances of the problem. We then focus on graphs satisfying the color-connectivity property. We design an FPT algorithm for this problem parameterized by both k and the treewidth of the graph and extend this result further to obtain an FPT algorithm for the parameterization by both k and the length of the path. The latter result implies and explains previous FPT results for various obstacle shapes.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Colored Path Problem and Its Applications\",\"authors\":\"E. Eiben, Iyad A. Kanj\",\"doi\":\"10.1145/3396573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a set of obstacles and two points in the plane, is there a path between the two points that does not cross more than k different obstacles? Equivalently, can we remove k obstacles so that there is an obstacle-free path between the two designated points? This is a fundamental NP-hard problem that has undergone a tremendous amount of research work. The problem can be formulated and generalized into the following graph problem: Given a planar graph G whose vertices are colored by color sets, two designated vertices s, t ∈ V(G), and k ∈ N, is there an s-t path in G that uses at most k colors? If each obstacle is connected, then the resulting graph satisfies the color-connectivity property, namely that each color induces a connected subgraph. We study the complexity and design algorithms for the above graph problem with an eye on its geometric applications. We prove a set of hardness results, including a result showing that the color-connectivity property is crucial for any hope for fixed-parameter tractable (FPT) algorithms. We also show that our hardness results translate to the geometric instances of the problem. We then focus on graphs satisfying the color-connectivity property. We design an FPT algorithm for this problem parameterized by both k and the treewidth of the graph and extend this result further to obtain an FPT algorithm for the parameterization by both k and the length of the path. The latter result implies and explains previous FPT results for various obstacle shapes.\",\"PeriodicalId\":154047,\"journal\":{\"name\":\"ACM Transactions on Algorithms (TALG)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms (TALG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3396573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3396573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Given a set of obstacles and two points in the plane, is there a path between the two points that does not cross more than k different obstacles? Equivalently, can we remove k obstacles so that there is an obstacle-free path between the two designated points? This is a fundamental NP-hard problem that has undergone a tremendous amount of research work. The problem can be formulated and generalized into the following graph problem: Given a planar graph G whose vertices are colored by color sets, two designated vertices s, t ∈ V(G), and k ∈ N, is there an s-t path in G that uses at most k colors? If each obstacle is connected, then the resulting graph satisfies the color-connectivity property, namely that each color induces a connected subgraph. We study the complexity and design algorithms for the above graph problem with an eye on its geometric applications. We prove a set of hardness results, including a result showing that the color-connectivity property is crucial for any hope for fixed-parameter tractable (FPT) algorithms. We also show that our hardness results translate to the geometric instances of the problem. We then focus on graphs satisfying the color-connectivity property. We design an FPT algorithm for this problem parameterized by both k and the treewidth of the graph and extend this result further to obtain an FPT algorithm for the parameterization by both k and the length of the path. The latter result implies and explains previous FPT results for various obstacle shapes.