作为球面超曲面高斯映射的复二次曲面的拉格朗日子流形

J. Veken, Anne Wijffels
{"title":"作为球面超曲面高斯映射的复二次曲面的拉格朗日子流形","authors":"J. Veken, Anne Wijffels","doi":"10.1090/conm/756/15213","DOIUrl":null,"url":null,"abstract":"The Gauss map of a hypersurface of a unit sphere $S^{n+1}(1)$ is a Lagrangian immersion into the complex quadric $Q^n$ and, conversely, every Lagrangian submanifold of $Q^n$ is locally the image under the Gauss map of several hypersurfaces of $S^{n+1}(1)$. In this paper, we give explicit constructions for these correspondences and we prove a relation between the principal curvatures of a hypersurface of $S^{n+1}(1)$ and the local angle functions of the corresponding Lagrangian submanifold of $Q^n$. The existence of such a relation is remarkable since the definition of the angle functions depends on the choice of an almost product structure on $Q^n$ and since several hypersurfaces of $S^{n+1}(1)$, with different principal curvatures, correspond to the same Lagrangian submanifold of $Q^n$.","PeriodicalId":165273,"journal":{"name":"Geometry of Submanifolds","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lagrangian submanifolds of the complex\\n quadric as Gauss maps of hypersurfaces of\\n spheres\",\"authors\":\"J. Veken, Anne Wijffels\",\"doi\":\"10.1090/conm/756/15213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Gauss map of a hypersurface of a unit sphere $S^{n+1}(1)$ is a Lagrangian immersion into the complex quadric $Q^n$ and, conversely, every Lagrangian submanifold of $Q^n$ is locally the image under the Gauss map of several hypersurfaces of $S^{n+1}(1)$. In this paper, we give explicit constructions for these correspondences and we prove a relation between the principal curvatures of a hypersurface of $S^{n+1}(1)$ and the local angle functions of the corresponding Lagrangian submanifold of $Q^n$. The existence of such a relation is remarkable since the definition of the angle functions depends on the choice of an almost product structure on $Q^n$ and since several hypersurfaces of $S^{n+1}(1)$, with different principal curvatures, correspond to the same Lagrangian submanifold of $Q^n$.\",\"PeriodicalId\":165273,\"journal\":{\"name\":\"Geometry of Submanifolds\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry of Submanifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/756/15213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry of Submanifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/756/15213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

单位球面的超曲面$S^{n+1}(1)$的高斯映射是复二次曲面$Q^n$的拉格朗日浸入,反过来,$Q^n$的每一个拉格朗日子流形都是$S^{n+1}(1)$的几个超曲面的高斯映射下的局部像。本文给出了这些对应关系的显式构造,并证明了$S^{n+1}(1)$的超曲面的主曲率与$Q^n$的相应拉格朗日子流形的局部角函数之间的关系。这种关系的存在是值得注意的,因为角函数的定义取决于$Q^n$上的几乎积结构的选择,并且由于$S^{n+1}(1)$的几个具有不同主曲率的超曲面对应于$Q^n$的相同拉格朗日子流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lagrangian submanifolds of the complex quadric as Gauss maps of hypersurfaces of spheres
The Gauss map of a hypersurface of a unit sphere $S^{n+1}(1)$ is a Lagrangian immersion into the complex quadric $Q^n$ and, conversely, every Lagrangian submanifold of $Q^n$ is locally the image under the Gauss map of several hypersurfaces of $S^{n+1}(1)$. In this paper, we give explicit constructions for these correspondences and we prove a relation between the principal curvatures of a hypersurface of $S^{n+1}(1)$ and the local angle functions of the corresponding Lagrangian submanifold of $Q^n$. The existence of such a relation is remarkable since the definition of the angle functions depends on the choice of an almost product structure on $Q^n$ and since several hypersurfaces of $S^{n+1}(1)$, with different principal curvatures, correspond to the same Lagrangian submanifold of $Q^n$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信