基于小波变换的风电齿轮箱故障振动信号分析

Zhan-hong Yan, Liu Xiang-jun
{"title":"基于小波变换的风电齿轮箱故障振动信号分析","authors":"Zhan-hong Yan, Liu Xiang-jun","doi":"10.1109/MIC.2013.6758063","DOIUrl":null,"url":null,"abstract":"In wind turbine gearbox fault diagnosis, the signals from sensors are non-stationary vibration signals; on the impact of the wind turbine work environment, the vibration signal contains a lot of noise; The traditional signal processing methods cannot extract the fault characteristics fast and effectively from the vibration signals; this paper uses wavelet threshold value denoising method to analyze the wind turbine vibration signals and proves feasibility and practicability of the method through a example.","PeriodicalId":404630,"journal":{"name":"Proceedings of 2013 2nd International Conference on Measurement, Information and Control","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The fault vibration signal analysis of wind turbine gearbox based on wavelet transform\",\"authors\":\"Zhan-hong Yan, Liu Xiang-jun\",\"doi\":\"10.1109/MIC.2013.6758063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In wind turbine gearbox fault diagnosis, the signals from sensors are non-stationary vibration signals; on the impact of the wind turbine work environment, the vibration signal contains a lot of noise; The traditional signal processing methods cannot extract the fault characteristics fast and effectively from the vibration signals; this paper uses wavelet threshold value denoising method to analyze the wind turbine vibration signals and proves feasibility and practicability of the method through a example.\",\"PeriodicalId\":404630,\"journal\":{\"name\":\"Proceedings of 2013 2nd International Conference on Measurement, Information and Control\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2013 2nd International Conference on Measurement, Information and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIC.2013.6758063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2013 2nd International Conference on Measurement, Information and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIC.2013.6758063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在风电齿轮箱故障诊断中,来自传感器的信号为非平稳振动信号;受风力机工作环境的影响,其振动信号中含有大量的噪声;传统的信号处理方法不能快速有效地从振动信号中提取故障特征;本文采用小波阈值去噪方法对风力机振动信号进行分析,并通过实例验证了该方法的可行性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The fault vibration signal analysis of wind turbine gearbox based on wavelet transform
In wind turbine gearbox fault diagnosis, the signals from sensors are non-stationary vibration signals; on the impact of the wind turbine work environment, the vibration signal contains a lot of noise; The traditional signal processing methods cannot extract the fault characteristics fast and effectively from the vibration signals; this paper uses wavelet threshold value denoising method to analyze the wind turbine vibration signals and proves feasibility and practicability of the method through a example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信