合形新(3+1)维浅水波动方程解析解的构造

M. Şenol, Mehmet Gençyi̇ği̇t
{"title":"合形新(3+1)维浅水波动方程解析解的构造","authors":"M. Şenol, Mehmet Gençyi̇ği̇t","doi":"10.53570/jnt.1265715","DOIUrl":null,"url":null,"abstract":"This study investigates the new (3+1)-dimensional shallow water wave equation. To do so, the definitions of conformable derivatives and their descriptions are given. Using the Riccati equation and modified Kudryashov methods, exact solutions to this problem are discovered. The gathered data's contour plot surfaces and related 3D and 2D surfaces emphasize the result's physical nature. To monitor the problem's physical activity, exact and complete solutions are necessary. The results demonstrate the potential applicability of additional nonlinear physical models from mathematical physics and under-investigation in real-world settings. In order to solve fractional differential equations, it may prove helpful to use these methods in various situations.","PeriodicalId":347850,"journal":{"name":"Journal of New Theory","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Construction of Analytical Solutions to the Conformable New (3+1)-Dimensional Shallow Water Wave Equation\",\"authors\":\"M. Şenol, Mehmet Gençyi̇ği̇t\",\"doi\":\"10.53570/jnt.1265715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the new (3+1)-dimensional shallow water wave equation. To do so, the definitions of conformable derivatives and their descriptions are given. Using the Riccati equation and modified Kudryashov methods, exact solutions to this problem are discovered. The gathered data's contour plot surfaces and related 3D and 2D surfaces emphasize the result's physical nature. To monitor the problem's physical activity, exact and complete solutions are necessary. The results demonstrate the potential applicability of additional nonlinear physical models from mathematical physics and under-investigation in real-world settings. In order to solve fractional differential equations, it may prove helpful to use these methods in various situations.\",\"PeriodicalId\":347850,\"journal\":{\"name\":\"Journal of New Theory\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of New Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53570/jnt.1265715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53570/jnt.1265715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了一种新的(3+1)维浅水波动方程。为此,给出了构象导数的定义及其描述。利用Riccati方程和改进的Kudryashov方法,找到了该问题的精确解。采集数据的等高线图曲面和相关的3D、2D曲面强调了结果的物理性质。为了监测问题的身体活动,精确和完整的解决方案是必要的。结果证明了数学物理和正在研究的附加非线性物理模型在现实世界环境中的潜在适用性。为了解分数阶微分方程,在各种情况下使用这些方法可能是有帮助的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of Analytical Solutions to the Conformable New (3+1)-Dimensional Shallow Water Wave Equation
This study investigates the new (3+1)-dimensional shallow water wave equation. To do so, the definitions of conformable derivatives and their descriptions are given. Using the Riccati equation and modified Kudryashov methods, exact solutions to this problem are discovered. The gathered data's contour plot surfaces and related 3D and 2D surfaces emphasize the result's physical nature. To monitor the problem's physical activity, exact and complete solutions are necessary. The results demonstrate the potential applicability of additional nonlinear physical models from mathematical physics and under-investigation in real-world settings. In order to solve fractional differential equations, it may prove helpful to use these methods in various situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信