婴儿啼哭信号检测、模式提取与识别

Lichuan Liu, Yang Li, Kevin Kuo
{"title":"婴儿啼哭信号检测、模式提取与识别","authors":"Lichuan Liu, Yang Li, Kevin Kuo","doi":"10.1109/INFOCT.2018.8356861","DOIUrl":null,"url":null,"abstract":"The cry signals generated by infants serves as the primary communication for infants. Cry signals can provide insight into their wellbeing. This paper proposes to use the speech signal identification technique to recognize infant cry signals. Advanced signal processing methods are used to analyze the infant cry by using audio features in the time and frequency domains in an attempt to classify each cry to a specific need. The features extracted from audio feature space include linear predictive coding (LPC), linear predictive cepstral coefficients (LPCC), Bark frequency cepstral coefficients (BFCC) and Mel frequency cepstral coefficients (MFCC). The primary classification technique used were: nearest neighbor approach, neural networks method. The cry recognition of specific infants yielded promising results.","PeriodicalId":376443,"journal":{"name":"2018 International Conference on Information and Computer Technologies (ICICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Infant cry signal detection, pattern extraction and recognition\",\"authors\":\"Lichuan Liu, Yang Li, Kevin Kuo\",\"doi\":\"10.1109/INFOCT.2018.8356861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cry signals generated by infants serves as the primary communication for infants. Cry signals can provide insight into their wellbeing. This paper proposes to use the speech signal identification technique to recognize infant cry signals. Advanced signal processing methods are used to analyze the infant cry by using audio features in the time and frequency domains in an attempt to classify each cry to a specific need. The features extracted from audio feature space include linear predictive coding (LPC), linear predictive cepstral coefficients (LPCC), Bark frequency cepstral coefficients (BFCC) and Mel frequency cepstral coefficients (MFCC). The primary classification technique used were: nearest neighbor approach, neural networks method. The cry recognition of specific infants yielded promising results.\",\"PeriodicalId\":376443,\"journal\":{\"name\":\"2018 International Conference on Information and Computer Technologies (ICICT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Information and Computer Technologies (ICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCT.2018.8356861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Computer Technologies (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCT.2018.8356861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

婴儿产生的哭声信号是婴儿的主要交流方式。哭泣信号可以让我们了解他们的健康状况。本文提出利用语音信号识别技术对婴儿啼哭信号进行识别。采用先进的信号处理方法,利用时间和频率域的音频特征对婴儿哭声进行分析,试图将每个哭声分类到特定的需要。从音频特征空间中提取的特征包括线性预测编码(LPC)、线性预测倒谱系数(LPCC)、树皮频率倒谱系数(BFCC)和梅尔频率倒谱系数(MFCC)。主要采用的分类技术有:最近邻法、神经网络法。对特定婴儿的哭声识别产生了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infant cry signal detection, pattern extraction and recognition
The cry signals generated by infants serves as the primary communication for infants. Cry signals can provide insight into their wellbeing. This paper proposes to use the speech signal identification technique to recognize infant cry signals. Advanced signal processing methods are used to analyze the infant cry by using audio features in the time and frequency domains in an attempt to classify each cry to a specific need. The features extracted from audio feature space include linear predictive coding (LPC), linear predictive cepstral coefficients (LPCC), Bark frequency cepstral coefficients (BFCC) and Mel frequency cepstral coefficients (MFCC). The primary classification technique used were: nearest neighbor approach, neural networks method. The cry recognition of specific infants yielded promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信