复合板的三维效应

S. Prabhu, J. Lambros
{"title":"复合板的三维效应","authors":"S. Prabhu, J. Lambros","doi":"10.1115/imece1999-0904","DOIUrl":null,"url":null,"abstract":"\n In this study, a finite element investigation of the three dimensional nature of stress fields in the near tip region of a cracked orthotropic plate was conducted. Two and three dimensional finite element analyses were used to investigate the relative extent of regions of three dimensional to two dimensional (plane stress or plane strain) deformation in the cracked plate. The material properties used in the simulations corresponded to those of a graphite/epoxy composite. A three point bend loading geometry, with the fiber directions either parallel or perpendicular to the crack, was simulated. In analogy to isotropic materials, it was observed that a plane stress K-dominant region does not arise arbitrarily close to the crack tip because of the existence of a three dimensional zone. However, it was seen that the shape and the size of this three dimensional zone in the cracked composite plate is substantially different from that of an isotropic plate, and depends intimately on material properties. For a crack parallel to the fiber direction the three dimensional zone extends to 0.46h (h = specimen thickness) ahead of the crack tip but only to 0.27h at 30°. Fibers perpendicular to the crack produce a highly elongated three dimensional zone in the direction of the fibers (up to 0.78h). The zone is also sensitive to the variations in the Poisson’s ratio’s of the orthotropic solid.","PeriodicalId":136673,"journal":{"name":"Thick Composites for Load Bearing Structures","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three Dimensional Effects in Composite Plates\",\"authors\":\"S. Prabhu, J. Lambros\",\"doi\":\"10.1115/imece1999-0904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, a finite element investigation of the three dimensional nature of stress fields in the near tip region of a cracked orthotropic plate was conducted. Two and three dimensional finite element analyses were used to investigate the relative extent of regions of three dimensional to two dimensional (plane stress or plane strain) deformation in the cracked plate. The material properties used in the simulations corresponded to those of a graphite/epoxy composite. A three point bend loading geometry, with the fiber directions either parallel or perpendicular to the crack, was simulated. In analogy to isotropic materials, it was observed that a plane stress K-dominant region does not arise arbitrarily close to the crack tip because of the existence of a three dimensional zone. However, it was seen that the shape and the size of this three dimensional zone in the cracked composite plate is substantially different from that of an isotropic plate, and depends intimately on material properties. For a crack parallel to the fiber direction the three dimensional zone extends to 0.46h (h = specimen thickness) ahead of the crack tip but only to 0.27h at 30°. Fibers perpendicular to the crack produce a highly elongated three dimensional zone in the direction of the fibers (up to 0.78h). The zone is also sensitive to the variations in the Poisson’s ratio’s of the orthotropic solid.\",\"PeriodicalId\":136673,\"journal\":{\"name\":\"Thick Composites for Load Bearing Structures\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thick Composites for Load Bearing Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1999-0904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thick Composites for Load Bearing Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1999-0904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,有限元研究了裂纹正交各向异性板近尖端区域应力场的三维性质。采用二维和三维有限元分析研究了裂纹板中三维到二维(平面应力或平面应变)变形区域的相对程度。模拟中使用的材料性能与石墨/环氧复合材料的性能相对应。模拟了纤维方向与裂纹平行或垂直的三点弯曲加载几何形状。与各向同性材料类似,由于三维区域的存在,在裂纹尖端附近不会出现平面应力k主导区。然而,裂纹复合材料板中该三维区域的形状和大小与各向同性板的形状和大小有很大不同,并且与材料性能密切相关。对于平行于纤维方向的裂纹,三维区域延伸到裂纹尖端前0.46h (h =试样厚度),但在30°处仅延伸到0.27h。垂直于裂纹的纤维在纤维方向上产生一个高度拉长的三维区(最长0.78h)。该区域对正交各向异性固体泊松比的变化也很敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three Dimensional Effects in Composite Plates
In this study, a finite element investigation of the three dimensional nature of stress fields in the near tip region of a cracked orthotropic plate was conducted. Two and three dimensional finite element analyses were used to investigate the relative extent of regions of three dimensional to two dimensional (plane stress or plane strain) deformation in the cracked plate. The material properties used in the simulations corresponded to those of a graphite/epoxy composite. A three point bend loading geometry, with the fiber directions either parallel or perpendicular to the crack, was simulated. In analogy to isotropic materials, it was observed that a plane stress K-dominant region does not arise arbitrarily close to the crack tip because of the existence of a three dimensional zone. However, it was seen that the shape and the size of this three dimensional zone in the cracked composite plate is substantially different from that of an isotropic plate, and depends intimately on material properties. For a crack parallel to the fiber direction the three dimensional zone extends to 0.46h (h = specimen thickness) ahead of the crack tip but only to 0.27h at 30°. Fibers perpendicular to the crack produce a highly elongated three dimensional zone in the direction of the fibers (up to 0.78h). The zone is also sensitive to the variations in the Poisson’s ratio’s of the orthotropic solid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信