{"title":"面向高性能计算的分布式可靠软件定义存储控制平面","authors":"Mariana Miranda","doi":"10.1109/CCGridW59191.2023.00071","DOIUrl":null,"url":null,"abstract":"The Software-Defined Storage (SDS) paradigm has emerged as a way to ease the orchestration and management complexities of storage systems. This work aims to mitigate the storage performance issues that large-scale HPC infrastructures are currently facing by developing a scalable and dependable control plane that can be integrated into an SDS design to take full advantage of the tools this paradigm offers. The proposed solution will enable system administrators to define storage policies (e.g., I/O prioritization, rate limiting) and, based on them, the control plane will orchestrate the storage system to provide better QoS for data-centric applications.","PeriodicalId":341115,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed and Dependable Software-Defined Storage Control Plane for HPC\",\"authors\":\"Mariana Miranda\",\"doi\":\"10.1109/CCGridW59191.2023.00071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Software-Defined Storage (SDS) paradigm has emerged as a way to ease the orchestration and management complexities of storage systems. This work aims to mitigate the storage performance issues that large-scale HPC infrastructures are currently facing by developing a scalable and dependable control plane that can be integrated into an SDS design to take full advantage of the tools this paradigm offers. The proposed solution will enable system administrators to define storage policies (e.g., I/O prioritization, rate limiting) and, based on them, the control plane will orchestrate the storage system to provide better QoS for data-centric applications.\",\"PeriodicalId\":341115,\"journal\":{\"name\":\"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)\",\"volume\":\"217 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGridW59191.2023.00071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGridW59191.2023.00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed and Dependable Software-Defined Storage Control Plane for HPC
The Software-Defined Storage (SDS) paradigm has emerged as a way to ease the orchestration and management complexities of storage systems. This work aims to mitigate the storage performance issues that large-scale HPC infrastructures are currently facing by developing a scalable and dependable control plane that can be integrated into an SDS design to take full advantage of the tools this paradigm offers. The proposed solution will enable system administrators to define storage policies (e.g., I/O prioritization, rate limiting) and, based on them, the control plane will orchestrate the storage system to provide better QoS for data-centric applications.