一种新的不平衡数据噪声滤波算法

J. V. Hulse, T. Khoshgoftaar, Amri Napolitano
{"title":"一种新的不平衡数据噪声滤波算法","authors":"J. V. Hulse, T. Khoshgoftaar, Amri Napolitano","doi":"10.1109/ICMLA.2010.9","DOIUrl":null,"url":null,"abstract":"Noise filtering is a commonly-used methodology to improve the performance of learners built using low-quality data. A common type of noise filtering is a data preprocessing technique called classification filtering. In classification filtering, a classifier is built and evaluated on the training dataset (typically using cross-validation) and any misclassified instances are considered noisy. The strategies employed with classification filters are not ideal, particularly when learning from class-imbalanced data. To address this deficiency, we propose an alternative method for classification filtering called the threshold-adjusted classification filter. This methodology is compared with the standard classification filter, and the results clearly demonstrate the efficacy of our technique.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A Novel Noise Filtering Algorithm for Imbalanced Data\",\"authors\":\"J. V. Hulse, T. Khoshgoftaar, Amri Napolitano\",\"doi\":\"10.1109/ICMLA.2010.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Noise filtering is a commonly-used methodology to improve the performance of learners built using low-quality data. A common type of noise filtering is a data preprocessing technique called classification filtering. In classification filtering, a classifier is built and evaluated on the training dataset (typically using cross-validation) and any misclassified instances are considered noisy. The strategies employed with classification filters are not ideal, particularly when learning from class-imbalanced data. To address this deficiency, we propose an alternative method for classification filtering called the threshold-adjusted classification filter. This methodology is compared with the standard classification filter, and the results clearly demonstrate the efficacy of our technique.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

噪声滤波是一种常用的方法来提高使用低质量数据构建的学习器的性能。一种常见的噪声滤波是一种称为分类滤波的数据预处理技术。在分类过滤中,分类器是在训练数据集上构建和评估的(通常使用交叉验证),任何错误分类的实例都被认为是有噪声的。使用分类过滤器的策略并不理想,特别是在从类不平衡数据中学习时。为了解决这一缺陷,我们提出了一种分类滤波的替代方法,称为阈值调整分类滤波器。将该方法与标准分类滤波器进行了比较,结果清楚地证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Noise Filtering Algorithm for Imbalanced Data
Noise filtering is a commonly-used methodology to improve the performance of learners built using low-quality data. A common type of noise filtering is a data preprocessing technique called classification filtering. In classification filtering, a classifier is built and evaluated on the training dataset (typically using cross-validation) and any misclassified instances are considered noisy. The strategies employed with classification filters are not ideal, particularly when learning from class-imbalanced data. To address this deficiency, we propose an alternative method for classification filtering called the threshold-adjusted classification filter. This methodology is compared with the standard classification filter, and the results clearly demonstrate the efficacy of our technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信