基于神经网络的宽带射频功率放大器行为建模与数字预失真线性化

Taijun Liu
{"title":"基于神经网络的宽带射频功率放大器行为建模与数字预失真线性化","authors":"Taijun Liu","doi":"10.1109/ICMMT.2016.7761760","DOIUrl":null,"url":null,"abstract":"In this talk, we will focus on discussing the capability of a few neural networks for modeling and linearizing different RF power amplifiers. The AM/AM and AM/PM characteristics and spectrum comparison will be utilized to evaluate the performance of different neural networks in modeling and preditortion linearization. At first, a few BP based feedforward neural networks will be used to simulate the dynamic nonlinearity of RF power amplifiers. Then they will be utilized to linearize the power amplifiers. After that, a few RBF neural networks will be applied to construct the behavioral model and digital predistortion linearizers for the wideband RF power amplifiers. And furthermore, a hybrid-structure neural network is presented to mimic the dynamic nonlinear properties of a broadband RF power amplifiers. Finally, the future trend for modeling and linearization of RF power amplifiers with neural networks will be discussed.","PeriodicalId":438795,"journal":{"name":"2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Behavioral modeling and digital predistortion linearization for wideband RF power amplifiers with neural networks\",\"authors\":\"Taijun Liu\",\"doi\":\"10.1109/ICMMT.2016.7761760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this talk, we will focus on discussing the capability of a few neural networks for modeling and linearizing different RF power amplifiers. The AM/AM and AM/PM characteristics and spectrum comparison will be utilized to evaluate the performance of different neural networks in modeling and preditortion linearization. At first, a few BP based feedforward neural networks will be used to simulate the dynamic nonlinearity of RF power amplifiers. Then they will be utilized to linearize the power amplifiers. After that, a few RBF neural networks will be applied to construct the behavioral model and digital predistortion linearizers for the wideband RF power amplifiers. And furthermore, a hybrid-structure neural network is presented to mimic the dynamic nonlinear properties of a broadband RF power amplifiers. Finally, the future trend for modeling and linearization of RF power amplifiers with neural networks will be discussed.\",\"PeriodicalId\":438795,\"journal\":{\"name\":\"2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMMT.2016.7761760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMMT.2016.7761760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这次演讲中,我们将重点讨论几种神经网络对不同射频功率放大器建模和线性化的能力。利用AM/AM和AM/PM特性和频谱比较来评估不同神经网络在建模和预测线性化方面的性能。首先,采用基于BP的前馈神经网络来模拟射频功率放大器的动态非线性。然后利用它们对功率放大器进行线性化。然后,应用RBF神经网络构建宽带射频功率放大器的行为模型和数字预失真线性化器。在此基础上,提出了一种混合结构神经网络来模拟宽带射频功率放大器的动态非线性特性。最后,讨论了射频功率放大器的神经网络建模和线性化的未来趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behavioral modeling and digital predistortion linearization for wideband RF power amplifiers with neural networks
In this talk, we will focus on discussing the capability of a few neural networks for modeling and linearizing different RF power amplifiers. The AM/AM and AM/PM characteristics and spectrum comparison will be utilized to evaluate the performance of different neural networks in modeling and preditortion linearization. At first, a few BP based feedforward neural networks will be used to simulate the dynamic nonlinearity of RF power amplifiers. Then they will be utilized to linearize the power amplifiers. After that, a few RBF neural networks will be applied to construct the behavioral model and digital predistortion linearizers for the wideband RF power amplifiers. And furthermore, a hybrid-structure neural network is presented to mimic the dynamic nonlinear properties of a broadband RF power amplifiers. Finally, the future trend for modeling and linearization of RF power amplifiers with neural networks will be discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信