基于模型预测控制的LSTM编码器的柔性针转向

Chris Morley, Rajni V. Patel
{"title":"基于模型预测控制的LSTM编码器的柔性针转向","authors":"Chris Morley, Rajni V. Patel","doi":"10.1109/RAAI56146.2022.10092964","DOIUrl":null,"url":null,"abstract":"This work presents a method of using recurrent neural networks (RNNs) in combination with model predictive control to determine an optimal control strategy for needle manipulation for deep tissue applications. The paper discusses creating a needle insertion model from experimental data that can then be used to generate data for training the proposed network. The RNN makes no assumptions about needle-tissue interaction, instead it learns the dynamics of the interaction from simulated and experimental data. It is shown in the paper how deep recurrent neural networks can create a simple cost function enabling model predictive control to determine an optimal sequence of needle manipulations. Simulation results show that the proposed control structure can accurately predict the effect of current control actions on future trajectory. Simulation results indicate that the proposed control strategy is able to determine an optimal control strategy within a few time steps of the simulation initializing, while requiring only one rotation to enable a needle to be steered to within 1.1mm of the desired target.","PeriodicalId":190255,"journal":{"name":"2022 2nd International Conference on Robotics, Automation and Artificial Intelligence (RAAI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Steering of Flexible Needles Using an LSTM Encoder with Model Predictive Control\",\"authors\":\"Chris Morley, Rajni V. Patel\",\"doi\":\"10.1109/RAAI56146.2022.10092964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a method of using recurrent neural networks (RNNs) in combination with model predictive control to determine an optimal control strategy for needle manipulation for deep tissue applications. The paper discusses creating a needle insertion model from experimental data that can then be used to generate data for training the proposed network. The RNN makes no assumptions about needle-tissue interaction, instead it learns the dynamics of the interaction from simulated and experimental data. It is shown in the paper how deep recurrent neural networks can create a simple cost function enabling model predictive control to determine an optimal sequence of needle manipulations. Simulation results show that the proposed control structure can accurately predict the effect of current control actions on future trajectory. Simulation results indicate that the proposed control strategy is able to determine an optimal control strategy within a few time steps of the simulation initializing, while requiring only one rotation to enable a needle to be steered to within 1.1mm of the desired target.\",\"PeriodicalId\":190255,\"journal\":{\"name\":\"2022 2nd International Conference on Robotics, Automation and Artificial Intelligence (RAAI)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Robotics, Automation and Artificial Intelligence (RAAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAAI56146.2022.10092964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Robotics, Automation and Artificial Intelligence (RAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAAI56146.2022.10092964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究提出了一种将递归神经网络(rnn)与模型预测控制相结合的方法,以确定深层组织应用中针刺操作的最佳控制策略。本文讨论了从实验数据创建针头插入模型,该模型可用于生成训练所提出网络的数据。RNN没有对针与组织的相互作用做任何假设,而是从模拟和实验数据中学习相互作用的动力学。本文展示了深度递归神经网络如何创建一个简单的成本函数,使模型预测控制能够确定最佳的针操作序列。仿真结果表明,所提出的控制结构能够准确预测当前控制动作对未来轨迹的影响。仿真结果表明,所提出的控制策略能够在仿真初始化的几个时间步内确定最优控制策略,并且只需要旋转一次就可以使针转向到目标的1.1mm范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steering of Flexible Needles Using an LSTM Encoder with Model Predictive Control
This work presents a method of using recurrent neural networks (RNNs) in combination with model predictive control to determine an optimal control strategy for needle manipulation for deep tissue applications. The paper discusses creating a needle insertion model from experimental data that can then be used to generate data for training the proposed network. The RNN makes no assumptions about needle-tissue interaction, instead it learns the dynamics of the interaction from simulated and experimental data. It is shown in the paper how deep recurrent neural networks can create a simple cost function enabling model predictive control to determine an optimal sequence of needle manipulations. Simulation results show that the proposed control structure can accurately predict the effect of current control actions on future trajectory. Simulation results indicate that the proposed control strategy is able to determine an optimal control strategy within a few time steps of the simulation initializing, while requiring only one rotation to enable a needle to be steered to within 1.1mm of the desired target.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信