基于模板匹配的基于图的加权自环变换预测编码

Debaleena Roy, T. Guha, Victor Sanchez
{"title":"基于模板匹配的基于图的加权自环变换预测编码","authors":"Debaleena Roy, T. Guha, Victor Sanchez","doi":"10.1109/DCC.2019.00041","DOIUrl":null,"url":null,"abstract":"This paper introduces the GBT-L, a novel class of Graph-based Transform within the context of block-based predictive transform coding. The GBT-L is constructed using a 2D graph with unit edge weights and weighted self-loops in every vertex. The weighted selfloops are selected based on the residual values to be transformed. To avoid signalling any additional information required to compute the inverse GBT-L, we also introduce a coding framework that uses a template-based strategy to predict residual blocks in the pixel and residual domains. Evaluation results on several video frames and medical images, in terms of the percentage of preserved energy and mean square error, show that the GBT-L can outperform the DST, DCT and the Graph-based Separable Transform.","PeriodicalId":167723,"journal":{"name":"2019 Data Compression Conference (DCC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Graph-Based Transform with Weighted Self-Loops for Predictive Transform Coding Based on Template Matching\",\"authors\":\"Debaleena Roy, T. Guha, Victor Sanchez\",\"doi\":\"10.1109/DCC.2019.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the GBT-L, a novel class of Graph-based Transform within the context of block-based predictive transform coding. The GBT-L is constructed using a 2D graph with unit edge weights and weighted self-loops in every vertex. The weighted selfloops are selected based on the residual values to be transformed. To avoid signalling any additional information required to compute the inverse GBT-L, we also introduce a coding framework that uses a template-based strategy to predict residual blocks in the pixel and residual domains. Evaluation results on several video frames and medical images, in terms of the percentage of preserved energy and mean square error, show that the GBT-L can outperform the DST, DCT and the Graph-based Separable Transform.\",\"PeriodicalId\":167723,\"journal\":{\"name\":\"2019 Data Compression Conference (DCC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Data Compression Conference (DCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2019.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Data Compression Conference (DCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2019.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了基于块的预测变换编码背景下的一类新的基于图的变换(GBT-L)。GBT-L是用一个具有单位边权和每个顶点的加权自环的二维图来构造的。根据待变换的残差值选择加权自flops。为了避免发送计算逆GBT-L所需的任何额外信息,我们还引入了一个编码框架,该框架使用基于模板的策略来预测像素和残差域中的残差块。在若干视频帧和医学图像上的评价结果表明,GBT-L在保留能量百分比和均方误差方面优于DST、DCT和基于图的可分离变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph-Based Transform with Weighted Self-Loops for Predictive Transform Coding Based on Template Matching
This paper introduces the GBT-L, a novel class of Graph-based Transform within the context of block-based predictive transform coding. The GBT-L is constructed using a 2D graph with unit edge weights and weighted self-loops in every vertex. The weighted selfloops are selected based on the residual values to be transformed. To avoid signalling any additional information required to compute the inverse GBT-L, we also introduce a coding framework that uses a template-based strategy to predict residual blocks in the pixel and residual domains. Evaluation results on several video frames and medical images, in terms of the percentage of preserved energy and mean square error, show that the GBT-L can outperform the DST, DCT and the Graph-based Separable Transform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信