{"title":"提高电池性能的高熵电解质","authors":"Jijian Xu","doi":"10.1088/2752-5724/ace8ab","DOIUrl":null,"url":null,"abstract":"Entropy, once overlooked, is an essential aspect of electrolytes. Recently emerged high-entropy electrolytes with multiple components provide vast compositional space and interfacial chemistry possibilities for electrolyte design. It is noteworthy that high-entropy electrolytes exhibit extraordinarily high ionic conductivity at low temperatures, thereby creating a new direction for batteries to operate at ultra-low temperatures. This commentary discusses the underlying mechanism, challenges encountered, and potential solutions of high-entropy electrolyte design in the hope of sparking future research in this subject.","PeriodicalId":221966,"journal":{"name":"Materials Futures","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-entropy electrolytes in boosting battery performance\",\"authors\":\"Jijian Xu\",\"doi\":\"10.1088/2752-5724/ace8ab\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Entropy, once overlooked, is an essential aspect of electrolytes. Recently emerged high-entropy electrolytes with multiple components provide vast compositional space and interfacial chemistry possibilities for electrolyte design. It is noteworthy that high-entropy electrolytes exhibit extraordinarily high ionic conductivity at low temperatures, thereby creating a new direction for batteries to operate at ultra-low temperatures. This commentary discusses the underlying mechanism, challenges encountered, and potential solutions of high-entropy electrolyte design in the hope of sparking future research in this subject.\",\"PeriodicalId\":221966,\"journal\":{\"name\":\"Materials Futures\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Futures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2752-5724/ace8ab\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Futures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2752-5724/ace8ab","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-entropy electrolytes in boosting battery performance
Entropy, once overlooked, is an essential aspect of electrolytes. Recently emerged high-entropy electrolytes with multiple components provide vast compositional space and interfacial chemistry possibilities for electrolyte design. It is noteworthy that high-entropy electrolytes exhibit extraordinarily high ionic conductivity at low temperatures, thereby creating a new direction for batteries to operate at ultra-low temperatures. This commentary discusses the underlying mechanism, challenges encountered, and potential solutions of high-entropy electrolyte design in the hope of sparking future research in this subject.