从脑结构连通性推断功能连通性

F. Deligianni, E. Robinson, C. Beckmann, D. Sharp, A. Edwards, D. Rueckert
{"title":"从脑结构连通性推断功能连通性","authors":"F. Deligianni, E. Robinson, C. Beckmann, D. Sharp, A. Edwards, D. Rueckert","doi":"10.1109/ISBI.2010.5490188","DOIUrl":null,"url":null,"abstract":"Studies that examine the relationship of functional and structural connectivity are tremendously important in interpreting neurophysiological data. Although, the relationship between functional and structural connectivity has been explored with a number of statistical tools [1, 2], there is no explicit attempt to quantitatively measure how well functional data can be predicted from structural data. Here, we predict functional connectivity from structural connectivity, explicitly, by utilizing a predictive model based on PCA and CCA. The combination of these techniques allowed the reduction of dimensionality and modeling of inter-correlations, successfully. We provide both qualitative and quantitative results based on a leave-one-out validation.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Inference of functional connectivity from structural brain connectivity\",\"authors\":\"F. Deligianni, E. Robinson, C. Beckmann, D. Sharp, A. Edwards, D. Rueckert\",\"doi\":\"10.1109/ISBI.2010.5490188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studies that examine the relationship of functional and structural connectivity are tremendously important in interpreting neurophysiological data. Although, the relationship between functional and structural connectivity has been explored with a number of statistical tools [1, 2], there is no explicit attempt to quantitatively measure how well functional data can be predicted from structural data. Here, we predict functional connectivity from structural connectivity, explicitly, by utilizing a predictive model based on PCA and CCA. The combination of these techniques allowed the reduction of dimensionality and modeling of inter-correlations, successfully. We provide both qualitative and quantitative results based on a leave-one-out validation.\",\"PeriodicalId\":250523,\"journal\":{\"name\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2010.5490188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

检查功能和结构连接关系的研究在解释神经生理学数据方面非常重要。虽然已经用一些统计工具探讨了功能和结构连通性之间的关系[1,2],但没有明确的尝试来定量衡量从结构数据中预测功能数据的效果。在这里,我们利用基于PCA和CCA的预测模型,明确地从结构连通性预测功能连通性。这些技术的结合成功地降低了维数并建立了相互关系的模型。我们提供定性和定量结果的基础上留下一个验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inference of functional connectivity from structural brain connectivity
Studies that examine the relationship of functional and structural connectivity are tremendously important in interpreting neurophysiological data. Although, the relationship between functional and structural connectivity has been explored with a number of statistical tools [1, 2], there is no explicit attempt to quantitatively measure how well functional data can be predicted from structural data. Here, we predict functional connectivity from structural connectivity, explicitly, by utilizing a predictive model based on PCA and CCA. The combination of these techniques allowed the reduction of dimensionality and modeling of inter-correlations, successfully. We provide both qualitative and quantitative results based on a leave-one-out validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信