纤维点画:概率扩散导管成像的说明性渲染

Mathias Goldau, Alexander Wiebel, Nico S. Gorbach, C. Melzer, M. Hlawitschka, G. Scheuermann, M. Tittgemeyer
{"title":"纤维点画:概率扩散导管成像的说明性渲染","authors":"Mathias Goldau, Alexander Wiebel, Nico S. Gorbach, C. Melzer, M. Hlawitschka, G. Scheuermann, M. Tittgemeyer","doi":"10.1109/BioVis.2011.6094044","DOIUrl":null,"url":null,"abstract":"One of the most promising avenues for compiling anatomical brain connectivity data arises from diffusion magnetic resonance imaging (dMRI). dMRI provides a rather novel family of medical imaging techniques with broad application in clinical as well as basic neu-roscience as it offers an estimate of the brain's fiber structure completely non-invasively and in vivo. A convenient way to reconstruct neuronal fiber pathways and to characterize anatomical connectivity from this data is the computation of diffusion tractograms. In this paper, we present a novel and effective method for visualizing probabilistic tractograms within their anatomical context. Our illustrative rendering technique, called fiber stippling, is inspired by visualization standards as found in anatomical textbooks. These illustrations typically show slice-based projections of fiber pathways and are typically hand-drawn. Applying the automatized technique to diffusion tractography, we demonstrate its expressiveness and intuitive usability as well as a more objective way to present white-matter structure in the human brain.","PeriodicalId":354473,"journal":{"name":"2011 IEEE Symposium on Biological Data Visualization (BioVis).","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Fiber stippling: An illustrative rendering for probabilistic diffusion tractography\",\"authors\":\"Mathias Goldau, Alexander Wiebel, Nico S. Gorbach, C. Melzer, M. Hlawitschka, G. Scheuermann, M. Tittgemeyer\",\"doi\":\"10.1109/BioVis.2011.6094044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most promising avenues for compiling anatomical brain connectivity data arises from diffusion magnetic resonance imaging (dMRI). dMRI provides a rather novel family of medical imaging techniques with broad application in clinical as well as basic neu-roscience as it offers an estimate of the brain's fiber structure completely non-invasively and in vivo. A convenient way to reconstruct neuronal fiber pathways and to characterize anatomical connectivity from this data is the computation of diffusion tractograms. In this paper, we present a novel and effective method for visualizing probabilistic tractograms within their anatomical context. Our illustrative rendering technique, called fiber stippling, is inspired by visualization standards as found in anatomical textbooks. These illustrations typically show slice-based projections of fiber pathways and are typically hand-drawn. Applying the automatized technique to diffusion tractography, we demonstrate its expressiveness and intuitive usability as well as a more objective way to present white-matter structure in the human brain.\",\"PeriodicalId\":354473,\"journal\":{\"name\":\"2011 IEEE Symposium on Biological Data Visualization (BioVis).\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Biological Data Visualization (BioVis).\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioVis.2011.6094044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Biological Data Visualization (BioVis).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioVis.2011.6094044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

弥散性磁共振成像(dMRI)是一种最有前途的收集脑连接数据的方法。dMRI提供了一个相当新颖的医学成像技术家族,在临床和基础神经科学中有着广泛的应用,因为它提供了对大脑纤维结构的完全无创和活体的估计。从这些数据中重建神经元纤维通路和表征解剖连通性的一种方便方法是计算扩散束图。在本文中,我们提出了一种新颖而有效的方法来显示其解剖学背景下的概率图。我们的说明性渲染技术,称为纤维点画,灵感来自于解剖学教科书中发现的可视化标准。这些插图通常显示纤维通路的基于切片的投影,并且通常是手绘的。我们将自动化技术应用于弥散束造影,证明了其表达性和直观的可用性,是一种更客观地呈现人脑白质结构的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fiber stippling: An illustrative rendering for probabilistic diffusion tractography
One of the most promising avenues for compiling anatomical brain connectivity data arises from diffusion magnetic resonance imaging (dMRI). dMRI provides a rather novel family of medical imaging techniques with broad application in clinical as well as basic neu-roscience as it offers an estimate of the brain's fiber structure completely non-invasively and in vivo. A convenient way to reconstruct neuronal fiber pathways and to characterize anatomical connectivity from this data is the computation of diffusion tractograms. In this paper, we present a novel and effective method for visualizing probabilistic tractograms within their anatomical context. Our illustrative rendering technique, called fiber stippling, is inspired by visualization standards as found in anatomical textbooks. These illustrations typically show slice-based projections of fiber pathways and are typically hand-drawn. Applying the automatized technique to diffusion tractography, we demonstrate its expressiveness and intuitive usability as well as a more objective way to present white-matter structure in the human brain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信