面向大规模并行应用的处理器工作负载分配算法

Serge Midonnet, Achille Wattelar
{"title":"面向大规模并行应用的处理器工作负载分配算法","authors":"Serge Midonnet, Achille Wattelar","doi":"10.1109/SBAC-PADW.2016.13","DOIUrl":null,"url":null,"abstract":"Directed Acyclic Graph (DAG) is a standard model used to describe tasks that execute according to precedence constraints and that allows intra-task parallelism. This model is well suited to camera-based applications where multiple treatments must be executed in parallel according to the camera input, such applications found for example in self-driving cars or image recognition via convolutional neural network (CNN). Such applications are used on embedded systems and therefore require low energy cost and a limited hardware space. The main contribution of this paper is to present a new partitioning algorithm based on a DAG stretching technique. This stretching algorithm frees processor cores and thus implies energy savings and leads to new hardware design using a reduced number of processors. We present an experimental evaluation of this algorithm to show its efficiency.","PeriodicalId":186179,"journal":{"name":"2016 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Processor Workload Distribution Algorithm for Massively Parallel Applications\",\"authors\":\"Serge Midonnet, Achille Wattelar\",\"doi\":\"10.1109/SBAC-PADW.2016.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Directed Acyclic Graph (DAG) is a standard model used to describe tasks that execute according to precedence constraints and that allows intra-task parallelism. This model is well suited to camera-based applications where multiple treatments must be executed in parallel according to the camera input, such applications found for example in self-driving cars or image recognition via convolutional neural network (CNN). Such applications are used on embedded systems and therefore require low energy cost and a limited hardware space. The main contribution of this paper is to present a new partitioning algorithm based on a DAG stretching technique. This stretching algorithm frees processor cores and thus implies energy savings and leads to new hardware design using a reduced number of processors. We present an experimental evaluation of this algorithm to show its efficiency.\",\"PeriodicalId\":186179,\"journal\":{\"name\":\"2016 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PADW.2016.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PADW.2016.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有向无环图(DAG)是一种标准模型,用于描述根据优先级约束执行的任务,并允许任务内部并行。该模型非常适合基于摄像头的应用,其中必须根据摄像头输入并行执行多个处理,例如自动驾驶汽车或通过卷积神经网络(CNN)进行图像识别的应用。此类应用程序用于嵌入式系统,因此需要低能源成本和有限的硬件空间。本文的主要贡献是提出了一种新的基于DAG拉伸技术的分区算法。这种扩展算法释放了处理器内核,从而意味着节能,并导致使用减少处理器数量的新硬件设计。我们对该算法进行了实验评估,以证明其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Processor Workload Distribution Algorithm for Massively Parallel Applications
Directed Acyclic Graph (DAG) is a standard model used to describe tasks that execute according to precedence constraints and that allows intra-task parallelism. This model is well suited to camera-based applications where multiple treatments must be executed in parallel according to the camera input, such applications found for example in self-driving cars or image recognition via convolutional neural network (CNN). Such applications are used on embedded systems and therefore require low energy cost and a limited hardware space. The main contribution of this paper is to present a new partitioning algorithm based on a DAG stretching technique. This stretching algorithm frees processor cores and thus implies energy savings and leads to new hardware design using a reduced number of processors. We present an experimental evaluation of this algorithm to show its efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信