多弹电磁发射器片轨和圆柱的设计与仿真

Shahab Mozafari, M. Bayati
{"title":"多弹电磁发射器片轨和圆柱的设计与仿真","authors":"Shahab Mozafari, M. Bayati","doi":"10.13052/2023.aces.j.380308","DOIUrl":null,"url":null,"abstract":"In Electromagnetic launcher (EML) research, beside reasonable L' and high muzzle velocities, there are several key features including multi-turn launching, low field intensity in payload position, high frequency shooting, less unwanted radiation, and so on. Attaining a solution might be feasible by a different structure. In this paper we have studied unequal curved electromagnetic rail launchers (EMRLs) as slice and cylindrical multi-projectile electromagnetic launchers, and the inductance gradient (L') of these structures has been calculated. Making multi-projectile EMRLs using a slice-rail structure is much easier than other plane methods. With a cylindrical multi-projectile EMRL, higher shooting frequency is more feasibly attained and there is no limit on the number of launchers at the same time. High temperature spots which are the result of high velocity and high current density distributions end in intense destructive erosion. Decreasing intense erosion in electromagnetic launcher structures will be more economical and provide greater reliability, therefore resulting in more applications for EMLs especially commercial ones. In parallel electromagnetic launchers, these points and areas are not omissible. In cylindrical EMRLs the problem of high current density distributions and its consequent erosion is significantly decreased because of the uniform distribution of current in its symmetric structure.","PeriodicalId":250668,"journal":{"name":"The Applied Computational Electromagnetics Society Journal (ACES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Simulation of a Slice-rail and Cylindrical for Multi-Projectile Electromagnetic Launchers\",\"authors\":\"Shahab Mozafari, M. Bayati\",\"doi\":\"10.13052/2023.aces.j.380308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Electromagnetic launcher (EML) research, beside reasonable L' and high muzzle velocities, there are several key features including multi-turn launching, low field intensity in payload position, high frequency shooting, less unwanted radiation, and so on. Attaining a solution might be feasible by a different structure. In this paper we have studied unequal curved electromagnetic rail launchers (EMRLs) as slice and cylindrical multi-projectile electromagnetic launchers, and the inductance gradient (L') of these structures has been calculated. Making multi-projectile EMRLs using a slice-rail structure is much easier than other plane methods. With a cylindrical multi-projectile EMRL, higher shooting frequency is more feasibly attained and there is no limit on the number of launchers at the same time. High temperature spots which are the result of high velocity and high current density distributions end in intense destructive erosion. Decreasing intense erosion in electromagnetic launcher structures will be more economical and provide greater reliability, therefore resulting in more applications for EMLs especially commercial ones. In parallel electromagnetic launchers, these points and areas are not omissible. In cylindrical EMRLs the problem of high current density distributions and its consequent erosion is significantly decreased because of the uniform distribution of current in its symmetric structure.\",\"PeriodicalId\":250668,\"journal\":{\"name\":\"The Applied Computational Electromagnetics Society Journal (ACES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Applied Computational Electromagnetics Society Journal (ACES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/2023.aces.j.380308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Applied Computational Electromagnetics Society Journal (ACES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/2023.aces.j.380308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在电磁发射器的研究中,除了合理的L'和高初速外,还具有多圈发射、载荷位置场强小、发射频率高、有害辐射小等特点。通过不同的结构获得解决方案可能是可行的。本文将不等弯曲电磁轨道发射器作为片式和圆柱形多弹电磁发射器进行了研究,并计算了这两种结构的电感梯度。采用片轨结构制造多弹EMRLs比其他平面方法容易得多。采用圆柱形多弹EMRL,可以获得更高的发射频率,同时不受发射器数量的限制。高温斑是高流速和高电流密度分布的结果,以强烈的破坏性侵蚀而告终。减少电磁发射装置结构的强烈侵蚀将更经济,提供更高的可靠性,从而为电磁发射装置特别是商业发射装置带来更多的应用。在平行电磁发射装置中,这些点和区域是不可忽略的。在圆柱形EMRLs中,由于电流在其对称结构中均匀分布,因此大大减少了高电流密度分布及其引起的侵蚀问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Simulation of a Slice-rail and Cylindrical for Multi-Projectile Electromagnetic Launchers
In Electromagnetic launcher (EML) research, beside reasonable L' and high muzzle velocities, there are several key features including multi-turn launching, low field intensity in payload position, high frequency shooting, less unwanted radiation, and so on. Attaining a solution might be feasible by a different structure. In this paper we have studied unequal curved electromagnetic rail launchers (EMRLs) as slice and cylindrical multi-projectile electromagnetic launchers, and the inductance gradient (L') of these structures has been calculated. Making multi-projectile EMRLs using a slice-rail structure is much easier than other plane methods. With a cylindrical multi-projectile EMRL, higher shooting frequency is more feasibly attained and there is no limit on the number of launchers at the same time. High temperature spots which are the result of high velocity and high current density distributions end in intense destructive erosion. Decreasing intense erosion in electromagnetic launcher structures will be more economical and provide greater reliability, therefore resulting in more applications for EMLs especially commercial ones. In parallel electromagnetic launchers, these points and areas are not omissible. In cylindrical EMRLs the problem of high current density distributions and its consequent erosion is significantly decreased because of the uniform distribution of current in its symmetric structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信