{"title":"Cu/ZnO/SiO2催化剂催化草酸二甲酯加氢合成乙二醇和乙醇","authors":"Xinbao Li, Shurong Wang, Lingjun Zhu, Q. Yin, Xiaolan Ge, Zhong-yang Luo","doi":"10.1109/WCST19361.2011.6114228","DOIUrl":null,"url":null,"abstract":"Ethylene glycol (EG) synthesis from dimethyl oxalate (DMO) hydrogenation is a sustainable method compared with the production by petrochemical technology. The Cu/ZnO/SiO2 catalysts prepared by deposition precipitation method have been characterized by XRD, SEM, H2-TPR, and N2 physisorption. Under optimum reaction conditions, a DMO conversion of 100% and EG selectivity of 98% was obtained on the CuZn-5 catalyst. The present work also demonstrates a feasibility method to produce ethanol from DMO hydrogenation. On the catalyst of CuZn-15, the conversion of DMO can reach to 99% with the ethanol selectivity of 64% under the optimized reaction conditions.","PeriodicalId":184093,"journal":{"name":"2011 World Congress on Sustainable Technologies (WCST)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ethylene glycol and ethanol synthesis from dimethyl oxalate hydrogenation on the Cu/ZnO/SiO2 catalysts\",\"authors\":\"Xinbao Li, Shurong Wang, Lingjun Zhu, Q. Yin, Xiaolan Ge, Zhong-yang Luo\",\"doi\":\"10.1109/WCST19361.2011.6114228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ethylene glycol (EG) synthesis from dimethyl oxalate (DMO) hydrogenation is a sustainable method compared with the production by petrochemical technology. The Cu/ZnO/SiO2 catalysts prepared by deposition precipitation method have been characterized by XRD, SEM, H2-TPR, and N2 physisorption. Under optimum reaction conditions, a DMO conversion of 100% and EG selectivity of 98% was obtained on the CuZn-5 catalyst. The present work also demonstrates a feasibility method to produce ethanol from DMO hydrogenation. On the catalyst of CuZn-15, the conversion of DMO can reach to 99% with the ethanol selectivity of 64% under the optimized reaction conditions.\",\"PeriodicalId\":184093,\"journal\":{\"name\":\"2011 World Congress on Sustainable Technologies (WCST)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 World Congress on Sustainable Technologies (WCST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCST19361.2011.6114228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 World Congress on Sustainable Technologies (WCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCST19361.2011.6114228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ethylene glycol and ethanol synthesis from dimethyl oxalate hydrogenation on the Cu/ZnO/SiO2 catalysts
Ethylene glycol (EG) synthesis from dimethyl oxalate (DMO) hydrogenation is a sustainable method compared with the production by petrochemical technology. The Cu/ZnO/SiO2 catalysts prepared by deposition precipitation method have been characterized by XRD, SEM, H2-TPR, and N2 physisorption. Under optimum reaction conditions, a DMO conversion of 100% and EG selectivity of 98% was obtained on the CuZn-5 catalyst. The present work also demonstrates a feasibility method to produce ethanol from DMO hydrogenation. On the catalyst of CuZn-15, the conversion of DMO can reach to 99% with the ethanol selectivity of 64% under the optimized reaction conditions.