{"title":"模拟VLSI实现二维,非线性,主动耳蜗模型","authors":"T. J. Hamilton, J. Tapson, C. Jin, A. V. Schaik","doi":"10.1109/BIOCAS.2008.4696897","DOIUrl":null,"url":null,"abstract":"This paper presents results from integrated circuit (IC) implementations of the active, nonlinear, two dimensional (2D) silicon cochlea. It begins by developing an active, 2D cochlea model which is based on the idea that the cochlear amplifier (CA) has dynamics governed by the Hopf equation. The realisation of the active 2D model leads to several hardware implementations that are based on two slightly different but equivalent approaches. The first implementation is called automatic quality factor control (AQC) which has the dynamics of a system that is governed by the Hopf equation and represents a type of parametric amplification. The second approach is based on implicitly modelling the Hopf equation as a Hopf oscillator. Together this work provides the foundations for a silicon cochlea that can be used to better understand the biological cochlea as well as explore higher auditory centres.","PeriodicalId":415200,"journal":{"name":"2008 IEEE Biomedical Circuits and Systems Conference","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Analogue VLSI implementations of two dimensional, nonlinear, active cochlea models\",\"authors\":\"T. J. Hamilton, J. Tapson, C. Jin, A. V. Schaik\",\"doi\":\"10.1109/BIOCAS.2008.4696897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents results from integrated circuit (IC) implementations of the active, nonlinear, two dimensional (2D) silicon cochlea. It begins by developing an active, 2D cochlea model which is based on the idea that the cochlear amplifier (CA) has dynamics governed by the Hopf equation. The realisation of the active 2D model leads to several hardware implementations that are based on two slightly different but equivalent approaches. The first implementation is called automatic quality factor control (AQC) which has the dynamics of a system that is governed by the Hopf equation and represents a type of parametric amplification. The second approach is based on implicitly modelling the Hopf equation as a Hopf oscillator. Together this work provides the foundations for a silicon cochlea that can be used to better understand the biological cochlea as well as explore higher auditory centres.\",\"PeriodicalId\":415200,\"journal\":{\"name\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2008.4696897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2008.4696897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analogue VLSI implementations of two dimensional, nonlinear, active cochlea models
This paper presents results from integrated circuit (IC) implementations of the active, nonlinear, two dimensional (2D) silicon cochlea. It begins by developing an active, 2D cochlea model which is based on the idea that the cochlear amplifier (CA) has dynamics governed by the Hopf equation. The realisation of the active 2D model leads to several hardware implementations that are based on two slightly different but equivalent approaches. The first implementation is called automatic quality factor control (AQC) which has the dynamics of a system that is governed by the Hopf equation and represents a type of parametric amplification. The second approach is based on implicitly modelling the Hopf equation as a Hopf oscillator. Together this work provides the foundations for a silicon cochlea that can be used to better understand the biological cochlea as well as explore higher auditory centres.