基于置信度分集的多分类器集成异步电动机故障诊断

H. Tao, L. Mo, Fei Shen, Z. Du, Ruqiang Yan
{"title":"基于置信度分集的多分类器集成异步电动机故障诊断","authors":"H. Tao, L. Mo, Fei Shen, Z. Du, Ruqiang Yan","doi":"10.1109/ICSENST.2016.7796328","DOIUrl":null,"url":null,"abstract":"Motor is a kind of imperative driving device, whether a motor can monitor its state precisely and diagnose fault timely have a profound impact. This paper mainly investigates the improvement of the general method of motor defect diagnosis to achieve higher accuracy. Unfortunately, every classifier has their own respective advantages and disadvantages, using the typical machine learning methods separately cannot achieve the expectant classify results. So, fusing the result of multiple classifiers to fully exploit the advantages of each sensor to reach the requirement of improving the classification accuracy. In this paper, three types of classifiers are fused: naïve Bayes classifier, Random Forest classifier, and SVM classifier. By the algorithm of multi-classifier, the states of the motor can be predicted correctly.","PeriodicalId":297617,"journal":{"name":"2016 10th International Conference on Sensing Technology (ICST)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-classifiers ensemble with confidence diversity for fault diagnosis in induction motors\",\"authors\":\"H. Tao, L. Mo, Fei Shen, Z. Du, Ruqiang Yan\",\"doi\":\"10.1109/ICSENST.2016.7796328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motor is a kind of imperative driving device, whether a motor can monitor its state precisely and diagnose fault timely have a profound impact. This paper mainly investigates the improvement of the general method of motor defect diagnosis to achieve higher accuracy. Unfortunately, every classifier has their own respective advantages and disadvantages, using the typical machine learning methods separately cannot achieve the expectant classify results. So, fusing the result of multiple classifiers to fully exploit the advantages of each sensor to reach the requirement of improving the classification accuracy. In this paper, three types of classifiers are fused: naïve Bayes classifier, Random Forest classifier, and SVM classifier. By the algorithm of multi-classifier, the states of the motor can be predicted correctly.\",\"PeriodicalId\":297617,\"journal\":{\"name\":\"2016 10th International Conference on Sensing Technology (ICST)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 10th International Conference on Sensing Technology (ICST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENST.2016.7796328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on Sensing Technology (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENST.2016.7796328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

电动机是一种必不可少的驱动装置,电动机能否准确监测其状态,及时诊断故障有着深远的影响。本文主要研究对一般运动缺陷诊断方法的改进,以达到更高的诊断精度。遗憾的是,每种分类器都有各自的优缺点,单独使用典型的机器学习方法并不能达到预期的分类结果。因此,融合多个分类器的结果,充分发挥每个传感器的优势,达到提高分类精度的要求。本文融合了三种分类器:naïve贝叶斯分类器、随机森林分类器和支持向量机分类器。通过多分类器算法,可以对电机的状态进行准确的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-classifiers ensemble with confidence diversity for fault diagnosis in induction motors
Motor is a kind of imperative driving device, whether a motor can monitor its state precisely and diagnose fault timely have a profound impact. This paper mainly investigates the improvement of the general method of motor defect diagnosis to achieve higher accuracy. Unfortunately, every classifier has their own respective advantages and disadvantages, using the typical machine learning methods separately cannot achieve the expectant classify results. So, fusing the result of multiple classifiers to fully exploit the advantages of each sensor to reach the requirement of improving the classification accuracy. In this paper, three types of classifiers are fused: naïve Bayes classifier, Random Forest classifier, and SVM classifier. By the algorithm of multi-classifier, the states of the motor can be predicted correctly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信