英语到日语口语翻译系统的课堂讲座

Veri Ferdiansyah, S. Nakagawa
{"title":"英语到日语口语翻译系统的课堂讲座","authors":"Veri Ferdiansyah, S. Nakagawa","doi":"10.1109/ICAICTA.2014.7005911","DOIUrl":null,"url":null,"abstract":"This paper presents our attempt to create English automatic speech recognition (ASR) and English to Japanese statistical machine translation system (SMT). We used MIT OpenCourseWare lectures as our test lecture corpus. Wall Street Journal (WSJ) corpus adapted with MIT OpenCourseWare lectures was used as our acoustic model. MIT OpenCourseWare lecture transcriptions were utilized to create our language model. As for the parallel corpus, we used TED Talks and Japanese-English News Article Alignment Data (JENAAD). Our proposed ASR system can achieve 32.1% 0word error rate (WER) and our SMT system can achieve 10.95 BLEU.","PeriodicalId":173600,"journal":{"name":"2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"English to Japanese spoken language translation system for classroom lectures\",\"authors\":\"Veri Ferdiansyah, S. Nakagawa\",\"doi\":\"10.1109/ICAICTA.2014.7005911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents our attempt to create English automatic speech recognition (ASR) and English to Japanese statistical machine translation system (SMT). We used MIT OpenCourseWare lectures as our test lecture corpus. Wall Street Journal (WSJ) corpus adapted with MIT OpenCourseWare lectures was used as our acoustic model. MIT OpenCourseWare lecture transcriptions were utilized to create our language model. As for the parallel corpus, we used TED Talks and Japanese-English News Article Alignment Data (JENAAD). Our proposed ASR system can achieve 32.1% 0word error rate (WER) and our SMT system can achieve 10.95 BLEU.\",\"PeriodicalId\":173600,\"journal\":{\"name\":\"2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICTA.2014.7005911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICTA.2014.7005911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了建立英语自动语音识别(ASR)和英语到日语统计机器翻译系统(SMT)的尝试。我们使用麻省理工学院开放课程作为我们的测试讲座语料库。华尔街日报语料库改编与麻省理工学院开放课程讲座被用作我们的声学模型。麻省理工学院开放课程的讲课记录被用来创建我们的语言模型。对于平行语料库,我们使用了TED演讲和日英新闻文章对齐数据(JENAAD)。本文提出的ASR系统0字错误率为32.1%,SMT系统0字错误率为10.95 BLEU。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
English to Japanese spoken language translation system for classroom lectures
This paper presents our attempt to create English automatic speech recognition (ASR) and English to Japanese statistical machine translation system (SMT). We used MIT OpenCourseWare lectures as our test lecture corpus. Wall Street Journal (WSJ) corpus adapted with MIT OpenCourseWare lectures was used as our acoustic model. MIT OpenCourseWare lecture transcriptions were utilized to create our language model. As for the parallel corpus, we used TED Talks and Japanese-English News Article Alignment Data (JENAAD). Our proposed ASR system can achieve 32.1% 0word error rate (WER) and our SMT system can achieve 10.95 BLEU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信