噪声输入下宽线性复值自适应滤波的偏置补偿MCSE算法

Si-Syuan Huang, Guobing Qian
{"title":"噪声输入下宽线性复值自适应滤波的偏置补偿MCSE算法","authors":"Si-Syuan Huang, Guobing Qian","doi":"10.1145/3529570.3529610","DOIUrl":null,"url":null,"abstract":"In this paper, based on minimum complex Shannon entropy (MCSE), a novel widely linear complex-valued estimated-input MCSE (WLC-EIMCSE) algorithm is proposed, which can not only make unbiased estimation in the environment where the input signal has noise, but also show superiority over WLC-EILMS and WLC-EIMCCC in the non-Gaussian noise whose output noise is bimodal Gaussian distribution with non-zero mean. The convergence of the proposed algorithm is analyzed, and the simulation of system identification verifies its superiority.","PeriodicalId":430367,"journal":{"name":"Proceedings of the 6th International Conference on Digital Signal Processing","volume":"474 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bias-Compensated MCSE Algorithm for Widely Linear Complex-Valued Adaptive Filtering with Noisy Inputs\",\"authors\":\"Si-Syuan Huang, Guobing Qian\",\"doi\":\"10.1145/3529570.3529610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, based on minimum complex Shannon entropy (MCSE), a novel widely linear complex-valued estimated-input MCSE (WLC-EIMCSE) algorithm is proposed, which can not only make unbiased estimation in the environment where the input signal has noise, but also show superiority over WLC-EILMS and WLC-EIMCCC in the non-Gaussian noise whose output noise is bimodal Gaussian distribution with non-zero mean. The convergence of the proposed algorithm is analyzed, and the simulation of system identification verifies its superiority.\",\"PeriodicalId\":430367,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Digital Signal Processing\",\"volume\":\"474 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3529570.3529610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529570.3529610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文基于最小复香农熵(MCSE),提出了一种新的广义线性复值估计输入MCSE (WLC-EIMCSE)算法,该算法不仅能在输入信号有噪声的环境下进行无偏估计,而且在输出噪声为非零均值的双峰高斯分布的非高斯噪声情况下,也比WLC-EILMS和WLC-EIMCCC具有优越性。分析了该算法的收敛性,并通过系统辨识仿真验证了该算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bias-Compensated MCSE Algorithm for Widely Linear Complex-Valued Adaptive Filtering with Noisy Inputs
In this paper, based on minimum complex Shannon entropy (MCSE), a novel widely linear complex-valued estimated-input MCSE (WLC-EIMCSE) algorithm is proposed, which can not only make unbiased estimation in the environment where the input signal has noise, but also show superiority over WLC-EILMS and WLC-EIMCCC in the non-Gaussian noise whose output noise is bimodal Gaussian distribution with non-zero mean. The convergence of the proposed algorithm is analyzed, and the simulation of system identification verifies its superiority.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信