{"title":"等变k理论在扭曲等变k理论中的分解","authors":"J. M. G'omez, B. Uribe","doi":"10.1142/S0129167X17500161","DOIUrl":null,"url":null,"abstract":"For G a finite group and X a G-space on which a normal subgroup A acts trivially, we show that the G-equivariant K-theory of X decomposes as a direct sum of twisted equivariant K-theories of X parametrized by the orbits of the conjugation action of G on the irreducible representations of A. The twists are group 2-cocycles which encode the obstruction of lifting an irreducible representation of A to the subgroup of G which fixes the isomorphism class of the irreducible representation.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A decomposition of equivariant K-theory in twisted equivariant K-theories\",\"authors\":\"J. M. G'omez, B. Uribe\",\"doi\":\"10.1142/S0129167X17500161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For G a finite group and X a G-space on which a normal subgroup A acts trivially, we show that the G-equivariant K-theory of X decomposes as a direct sum of twisted equivariant K-theories of X parametrized by the orbits of the conjugation action of G on the irreducible representations of A. The twists are group 2-cocycles which encode the obstruction of lifting an irreducible representation of A to the subgroup of G which fixes the isomorphism class of the irreducible representation.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129167X17500161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129167X17500161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A decomposition of equivariant K-theory in twisted equivariant K-theories
For G a finite group and X a G-space on which a normal subgroup A acts trivially, we show that the G-equivariant K-theory of X decomposes as a direct sum of twisted equivariant K-theories of X parametrized by the orbits of the conjugation action of G on the irreducible representations of A. The twists are group 2-cocycles which encode the obstruction of lifting an irreducible representation of A to the subgroup of G which fixes the isomorphism class of the irreducible representation.