缆索导管驱动的平行髋关节外骨骼及其在康复训练中的应用

Xiangyang Wang, Sheng Guo, Lianzheng Niu, Du-Xin Liu, Guangrong Chen
{"title":"缆索导管驱动的平行髋关节外骨骼及其在康复训练中的应用","authors":"Xiangyang Wang, Sheng Guo, Lianzheng Niu, Du-Xin Liu, Guangrong Chen","doi":"10.1109/ROBIO55434.2022.10011900","DOIUrl":null,"url":null,"abstract":"Rehabilitation training of patients who received total hip arthroplasty (THA) operation is necessary for their rebuilding of motor function. However, most existing exoskeleton devices for hip rehabilitation have an anthropomorphic structure. Misalignment between the mechanical and planted prothesis center is a problem that can cause additional stress in the hip for anthropomorphic exoskeletons, which are thus not applicable to THA rehabilitation training process. Also, the parasitic force due to the cable pulling of soft exoskeletons is also regarded as a shortcoming for users. To address these limitations and to provide training assistance for THA patients for better recovery, a novel hip exoskeleton with parallel structure is presented in this paper. The proposed exoskeleton has a remote actuation and Cable-conduit transmissions and is hence light in weight and can provide bidirectional assistive/resistive torque in the hip without generating stress in the hip, which is significant for THA patients having weak and sensitive planted hip joints. A controller is presented for a stable and safe human-machine interfacing during training with desired assistance delivered. Experiment results based on a benchmark platform verify the performance of the proposed exoskeletons system.","PeriodicalId":151112,"journal":{"name":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cable-Conduit-Driven Parallel Hip Exoskeleton and Its Implementation in Rehabilitation Training\",\"authors\":\"Xiangyang Wang, Sheng Guo, Lianzheng Niu, Du-Xin Liu, Guangrong Chen\",\"doi\":\"10.1109/ROBIO55434.2022.10011900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rehabilitation training of patients who received total hip arthroplasty (THA) operation is necessary for their rebuilding of motor function. However, most existing exoskeleton devices for hip rehabilitation have an anthropomorphic structure. Misalignment between the mechanical and planted prothesis center is a problem that can cause additional stress in the hip for anthropomorphic exoskeletons, which are thus not applicable to THA rehabilitation training process. Also, the parasitic force due to the cable pulling of soft exoskeletons is also regarded as a shortcoming for users. To address these limitations and to provide training assistance for THA patients for better recovery, a novel hip exoskeleton with parallel structure is presented in this paper. The proposed exoskeleton has a remote actuation and Cable-conduit transmissions and is hence light in weight and can provide bidirectional assistive/resistive torque in the hip without generating stress in the hip, which is significant for THA patients having weak and sensitive planted hip joints. A controller is presented for a stable and safe human-machine interfacing during training with desired assistance delivered. Experiment results based on a benchmark platform verify the performance of the proposed exoskeletons system.\",\"PeriodicalId\":151112,\"journal\":{\"name\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO55434.2022.10011900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO55434.2022.10011900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全髋关节置换术后患者的康复训练对其运动功能的重建是必要的。然而,大多数现有的用于髋关节康复的外骨骼装置具有拟人结构。对于拟人外骨骼,机械假体中心与人工假体中心之间的错位会对髋关节造成额外的压力,因此不适用于THA康复训练过程。此外,软外骨骼的拉索产生的寄生力也被用户认为是一个缺点。为了解决这些局限性,并为THA患者提供更好的康复训练辅助,本文提出了一种新型平行结构的髋关节外骨骼。所提出的外骨骼具有远程驱动和电缆导管传输,因此重量轻,可以在髋关节内提供双向辅助/阻力扭矩,而不会在髋关节内产生应力,这对于植入髋关节脆弱敏感的THA患者具有重要意义。在训练过程中,提出了一种稳定、安全的人机界面控制器,并提供了所需的辅助。基于基准平台的实验结果验证了所提出的外骨骼系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cable-Conduit-Driven Parallel Hip Exoskeleton and Its Implementation in Rehabilitation Training
Rehabilitation training of patients who received total hip arthroplasty (THA) operation is necessary for their rebuilding of motor function. However, most existing exoskeleton devices for hip rehabilitation have an anthropomorphic structure. Misalignment between the mechanical and planted prothesis center is a problem that can cause additional stress in the hip for anthropomorphic exoskeletons, which are thus not applicable to THA rehabilitation training process. Also, the parasitic force due to the cable pulling of soft exoskeletons is also regarded as a shortcoming for users. To address these limitations and to provide training assistance for THA patients for better recovery, a novel hip exoskeleton with parallel structure is presented in this paper. The proposed exoskeleton has a remote actuation and Cable-conduit transmissions and is hence light in weight and can provide bidirectional assistive/resistive torque in the hip without generating stress in the hip, which is significant for THA patients having weak and sensitive planted hip joints. A controller is presented for a stable and safe human-machine interfacing during training with desired assistance delivered. Experiment results based on a benchmark platform verify the performance of the proposed exoskeletons system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信