用遗传算法选择天芒贡原罗布斯塔咖啡配送中最优运输路线

R. Yusianto, I. Hermadi, K. Kusnadi, Marimin Suprihatin, H. Hardjomidjojo
{"title":"用遗传算法选择天芒贡原罗布斯塔咖啡配送中最优运输路线","authors":"R. Yusianto, I. Hermadi, K. Kusnadi, Marimin Suprihatin, H. Hardjomidjojo","doi":"10.1109/iSemantic55962.2022.9920408","DOIUrl":null,"url":null,"abstract":"The selection of optimal transportation routes in the distribution of agro-industrial commodities consists of the need to visit locations that are the safest and optimal by considering the risk of commodity damage. In practice, the amount of time available is limited, complex, and uncertain, so metaheuristic algorithms are used. This study aims to help decision-makers choose the optimal transportation route in the original Temanggung robusta coffee distribution using Genetic Algorithms (GA). We used five interrelated research variables: location point, modes of transportation, path traversed, vehicle capacity, and distribution cost. We discussed the construction of the population, chromosome representation, fitness function, natural selection, crossover, and mutation. The results showed that the minimum distance traveled was 264.8 Km, the chromosomes having that distance were Z<inf>1</inf>\" – Z<inf>2</inf>\" – Z<inf>5</inf>\" – Z<inf>3</inf>\" – Z<inf>4</inf>\" – Z<inf>6</inf>\" – Z<inf>8</inf>\" – Z<inf>7</inf>\", and all chromosomes have the same route, namely Node<inf>1</inf> – Node<inf>2</inf> – Node<inf>5</inf> – Node<inf>3</inf> – Node<inf>4</inf> – Node<inf>6</inf> – Node<inf>8</inf> – Node<inf>7</inf>. The results of GA transportation optimization can find the minimum solution. It shows that GA can be used to choose the optimal transportation route in the distribution of the original robusta coffee of Temanggung. For further research, researchers can add resistance variables at each node.","PeriodicalId":360042,"journal":{"name":"2022 International Seminar on Application for Technology of Information and Communication (iSemantic)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selection of Optimal Transportation Routes in the Distribution of Temanggung Original Robusta Coffee using Genetic Algorithms\",\"authors\":\"R. Yusianto, I. Hermadi, K. Kusnadi, Marimin Suprihatin, H. Hardjomidjojo\",\"doi\":\"10.1109/iSemantic55962.2022.9920408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The selection of optimal transportation routes in the distribution of agro-industrial commodities consists of the need to visit locations that are the safest and optimal by considering the risk of commodity damage. In practice, the amount of time available is limited, complex, and uncertain, so metaheuristic algorithms are used. This study aims to help decision-makers choose the optimal transportation route in the original Temanggung robusta coffee distribution using Genetic Algorithms (GA). We used five interrelated research variables: location point, modes of transportation, path traversed, vehicle capacity, and distribution cost. We discussed the construction of the population, chromosome representation, fitness function, natural selection, crossover, and mutation. The results showed that the minimum distance traveled was 264.8 Km, the chromosomes having that distance were Z<inf>1</inf>\\\" – Z<inf>2</inf>\\\" – Z<inf>5</inf>\\\" – Z<inf>3</inf>\\\" – Z<inf>4</inf>\\\" – Z<inf>6</inf>\\\" – Z<inf>8</inf>\\\" – Z<inf>7</inf>\\\", and all chromosomes have the same route, namely Node<inf>1</inf> – Node<inf>2</inf> – Node<inf>5</inf> – Node<inf>3</inf> – Node<inf>4</inf> – Node<inf>6</inf> – Node<inf>8</inf> – Node<inf>7</inf>. The results of GA transportation optimization can find the minimum solution. It shows that GA can be used to choose the optimal transportation route in the distribution of the original robusta coffee of Temanggung. For further research, researchers can add resistance variables at each node.\",\"PeriodicalId\":360042,\"journal\":{\"name\":\"2022 International Seminar on Application for Technology of Information and Communication (iSemantic)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Seminar on Application for Technology of Information and Communication (iSemantic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSemantic55962.2022.9920408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Seminar on Application for Technology of Information and Communication (iSemantic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSemantic55962.2022.9920408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在选择农工商品分销的最佳运输路线时,需要考虑到商品损坏的风险,访问最安全和最佳的地点。在实践中,可用的时间量是有限的、复杂的和不确定的,因此使用元启发式算法。本研究旨在利用遗传算法(Genetic Algorithms, GA)帮助决策者选择原产天曼贡罗布斯塔咖啡的最优运输路线。我们使用了五个相互关联的研究变量:地点点、运输方式、路径穿越、车辆容量和配送成本。我们讨论了种群的构建、染色体表示、适应度函数、自然选择、交叉和突变。结果表明,最小行进距离为264.8 Km,具有该距离的染色体为Z1”—Z2”—Z5”—Z3”—Z4”—Z6”—Z8”—Z7”,且所有染色体的行进路线相同,即Node1—Node2—Node5—Node3—Node4—Node6—Node8—Node7。遗传算法运输优化的结果可以找到最小解。结果表明,遗传算法可用于选择天芒宫原罗布斯塔咖啡的最优运输路线。为了进一步研究,研究人员可以在每个节点添加阻力变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selection of Optimal Transportation Routes in the Distribution of Temanggung Original Robusta Coffee using Genetic Algorithms
The selection of optimal transportation routes in the distribution of agro-industrial commodities consists of the need to visit locations that are the safest and optimal by considering the risk of commodity damage. In practice, the amount of time available is limited, complex, and uncertain, so metaheuristic algorithms are used. This study aims to help decision-makers choose the optimal transportation route in the original Temanggung robusta coffee distribution using Genetic Algorithms (GA). We used five interrelated research variables: location point, modes of transportation, path traversed, vehicle capacity, and distribution cost. We discussed the construction of the population, chromosome representation, fitness function, natural selection, crossover, and mutation. The results showed that the minimum distance traveled was 264.8 Km, the chromosomes having that distance were Z1" – Z2" – Z5" – Z3" – Z4" – Z6" – Z8" – Z7", and all chromosomes have the same route, namely Node1 – Node2 – Node5 – Node3 – Node4 – Node6 – Node8 – Node7. The results of GA transportation optimization can find the minimum solution. It shows that GA can be used to choose the optimal transportation route in the distribution of the original robusta coffee of Temanggung. For further research, researchers can add resistance variables at each node.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信