一种在计算约束下进行特征跟踪的顺序检测框架

H. Richardson, S. Blostein
{"title":"一种在计算约束下进行特征跟踪的顺序检测框架","authors":"H. Richardson, S. Blostein","doi":"10.1109/CVPR.1992.223238","DOIUrl":null,"url":null,"abstract":"A unified decision-theoretic framework for automating the establishment of feature point correspondences in a temporally dense sequence of images is discussed. The approach extends a recent sequential detection algorithm to guide the detection and tracking of object feature points through an image sequence. The resulting extended feature tracks provide robust feature correspondences, for the estimation of three-dimensional structure and motion, over an extended number of image frames.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A sequential detection framework for feature tracking within computational constraints\",\"authors\":\"H. Richardson, S. Blostein\",\"doi\":\"10.1109/CVPR.1992.223238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A unified decision-theoretic framework for automating the establishment of feature point correspondences in a temporally dense sequence of images is discussed. The approach extends a recent sequential detection algorithm to guide the detection and tracking of object feature points through an image sequence. The resulting extended feature tracks provide robust feature correspondences, for the estimation of three-dimensional structure and motion, over an extended number of image frames.<<ETX>>\",\"PeriodicalId\":325476,\"journal\":{\"name\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1992.223238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

讨论了一种统一的决策理论框架,用于在时间密集图像序列中自动建立特征点对应。该方法扩展了最近的序列检测算法,通过图像序列指导目标特征点的检测和跟踪。由此产生的扩展特征轨迹为在扩展的图像帧数上估计三维结构和运动提供了鲁棒的特征对应
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A sequential detection framework for feature tracking within computational constraints
A unified decision-theoretic framework for automating the establishment of feature point correspondences in a temporally dense sequence of images is discussed. The approach extends a recent sequential detection algorithm to guide the detection and tracking of object feature points through an image sequence. The resulting extended feature tracks provide robust feature correspondences, for the estimation of three-dimensional structure and motion, over an extended number of image frames.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信