基于特征签名的科学数据库高效相似度搜索

M. S. Uysal, C. Beecks, Jochen Schmücking, T. Seidl
{"title":"基于特征签名的科学数据库高效相似度搜索","authors":"M. S. Uysal, C. Beecks, Jochen Schmücking, T. Seidl","doi":"10.1145/2791347.2791384","DOIUrl":null,"url":null,"abstract":"The recent rapid growth of scientific data necessitates efficient similarity search techniques for which convenient object representation models are of vital importance. Feature signatures denoting highly flexible object feature representations have increasingly gained attention for which corresponding efficiency improvement techniques are developed. In this paper, we focus on efficient query processing with the well-known Earth Mover's Distance (EMD) on databases of feature signatures, and propose efficient approximation techniques successfully applicable to high-dimensional feature signatures via dimensionality reduction, guaranteeing both completeness and no false-dismissal within a filter-and-refine architecture. Rigorous experiments on real world data indicate a considerable reduction in the number of EMD computations and high efficiency of the proposed techniques which significantly reduce the query processing time.","PeriodicalId":225179,"journal":{"name":"Proceedings of the 27th International Conference on Scientific and Statistical Database Management","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Efficient similarity search in scientific databases with feature signatures\",\"authors\":\"M. S. Uysal, C. Beecks, Jochen Schmücking, T. Seidl\",\"doi\":\"10.1145/2791347.2791384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent rapid growth of scientific data necessitates efficient similarity search techniques for which convenient object representation models are of vital importance. Feature signatures denoting highly flexible object feature representations have increasingly gained attention for which corresponding efficiency improvement techniques are developed. In this paper, we focus on efficient query processing with the well-known Earth Mover's Distance (EMD) on databases of feature signatures, and propose efficient approximation techniques successfully applicable to high-dimensional feature signatures via dimensionality reduction, guaranteeing both completeness and no false-dismissal within a filter-and-refine architecture. Rigorous experiments on real world data indicate a considerable reduction in the number of EMD computations and high efficiency of the proposed techniques which significantly reduce the query processing time.\",\"PeriodicalId\":225179,\"journal\":{\"name\":\"Proceedings of the 27th International Conference on Scientific and Statistical Database Management\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2791347.2791384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2791347.2791384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

近年来科学数据的快速增长需要高效的相似搜索技术,而方便的对象表示模型是至关重要的。特征签名表示高度灵活的对象特征表示越来越受到人们的关注,并为此开发了相应的效率改进技术。在本文中,我们重点研究了利用著名的地球移动距离(EMD)对特征签名数据库的高效查询处理,并提出了通过降维成功适用于高维特征签名的高效逼近技术,在过滤和细化架构中保证了完整性和无假排除。在实际数据上进行的严格实验表明,所提出的技术大大减少了EMD的计算次数,并且效率很高,大大缩短了查询处理时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient similarity search in scientific databases with feature signatures
The recent rapid growth of scientific data necessitates efficient similarity search techniques for which convenient object representation models are of vital importance. Feature signatures denoting highly flexible object feature representations have increasingly gained attention for which corresponding efficiency improvement techniques are developed. In this paper, we focus on efficient query processing with the well-known Earth Mover's Distance (EMD) on databases of feature signatures, and propose efficient approximation techniques successfully applicable to high-dimensional feature signatures via dimensionality reduction, guaranteeing both completeness and no false-dismissal within a filter-and-refine architecture. Rigorous experiments on real world data indicate a considerable reduction in the number of EMD computations and high efficiency of the proposed techniques which significantly reduce the query processing time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信