{"title":"钢铁生产工艺碳足迹评价在铝应用中的铁氧化物还原","authors":"V. Lisienko, Yu. N. Chesnokov, A. Lapteva","doi":"10.32339/0135-5910-2021-8-931-935","DOIUrl":null,"url":null,"abstract":"The XXIst conference on climate, held in Paris in 2015, set coordination of efforts of all the countries as an object to reduce greenhouse gases emissions. To realize the conference decisions, it is necessary to implement technologies ensuring reduction of carbon dioxide forming in every industry. Steel industry is one of its sources. A proposed in publications technology of production of carbon-free steel for nuclear power engineering, based on reducing of iron oxides by aluminum in the process of melting considered. As per authors opinion, since the carbon of coke was excluded out of the process of steel production by the technology, it results in exclusion of greenhouse gases emissions. The purpose of the work was to assess the carbon footprint of the technology taking into account emissions of carbon-containing gases in the previous processes. It was shown that steel production by the analyzed technology with metallic aluminum application for iron oxides reduction has a rather considerable carbon footprint despite the practical absence of carbon dioxide emissions directly in the process of its smelting. It is caused by a large volume of greenhouse gases emissions in the neighbored sectors of production of energy, raw materials and materials used for steel production and exceeds 4500 kg of carbon dioxide per 1 t of steel smelted by the technology. To assess the value of carbon footprint at creation of new and perfection of existing technological processes of goods production in ferrous metallurgy and other industries of economy, it was proposed to take into account its value along the whole chain of previous and neighbored production sectors.","PeriodicalId":259995,"journal":{"name":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of carbon footprint of steel production technology at aluminum application for iron oxides reducing\",\"authors\":\"V. Lisienko, Yu. N. Chesnokov, A. Lapteva\",\"doi\":\"10.32339/0135-5910-2021-8-931-935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The XXIst conference on climate, held in Paris in 2015, set coordination of efforts of all the countries as an object to reduce greenhouse gases emissions. To realize the conference decisions, it is necessary to implement technologies ensuring reduction of carbon dioxide forming in every industry. Steel industry is one of its sources. A proposed in publications technology of production of carbon-free steel for nuclear power engineering, based on reducing of iron oxides by aluminum in the process of melting considered. As per authors opinion, since the carbon of coke was excluded out of the process of steel production by the technology, it results in exclusion of greenhouse gases emissions. The purpose of the work was to assess the carbon footprint of the technology taking into account emissions of carbon-containing gases in the previous processes. It was shown that steel production by the analyzed technology with metallic aluminum application for iron oxides reduction has a rather considerable carbon footprint despite the practical absence of carbon dioxide emissions directly in the process of its smelting. It is caused by a large volume of greenhouse gases emissions in the neighbored sectors of production of energy, raw materials and materials used for steel production and exceeds 4500 kg of carbon dioxide per 1 t of steel smelted by the technology. To assess the value of carbon footprint at creation of new and perfection of existing technological processes of goods production in ferrous metallurgy and other industries of economy, it was proposed to take into account its value along the whole chain of previous and neighbored production sectors.\",\"PeriodicalId\":259995,\"journal\":{\"name\":\"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32339/0135-5910-2021-8-931-935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32339/0135-5910-2021-8-931-935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessment of carbon footprint of steel production technology at aluminum application for iron oxides reducing
The XXIst conference on climate, held in Paris in 2015, set coordination of efforts of all the countries as an object to reduce greenhouse gases emissions. To realize the conference decisions, it is necessary to implement technologies ensuring reduction of carbon dioxide forming in every industry. Steel industry is one of its sources. A proposed in publications technology of production of carbon-free steel for nuclear power engineering, based on reducing of iron oxides by aluminum in the process of melting considered. As per authors opinion, since the carbon of coke was excluded out of the process of steel production by the technology, it results in exclusion of greenhouse gases emissions. The purpose of the work was to assess the carbon footprint of the technology taking into account emissions of carbon-containing gases in the previous processes. It was shown that steel production by the analyzed technology with metallic aluminum application for iron oxides reduction has a rather considerable carbon footprint despite the practical absence of carbon dioxide emissions directly in the process of its smelting. It is caused by a large volume of greenhouse gases emissions in the neighbored sectors of production of energy, raw materials and materials used for steel production and exceeds 4500 kg of carbon dioxide per 1 t of steel smelted by the technology. To assess the value of carbon footprint at creation of new and perfection of existing technological processes of goods production in ferrous metallurgy and other industries of economy, it was proposed to take into account its value along the whole chain of previous and neighbored production sectors.