基于多视点动作图像和判别学习的非视点人类动作识别

Alexandros Iosifidis, A. Tefas, I. Pitas
{"title":"基于多视点动作图像和判别学习的非视点人类动作识别","authors":"Alexandros Iosifidis, A. Tefas, I. Pitas","doi":"10.1109/IVMSPW.2013.6611931","DOIUrl":null,"url":null,"abstract":"In this paper a novel view-independent human action recognition method is proposed. A multi-camera setup is used to capture the human body from different viewing angles. Actions are described by a novel action representation, the so-called multi-view action image (MVAI), which effectively addresses the camera viewpoint identification problem, i.e., the identification of the position of each camera with respect to the person's body. Linear Discriminant Analysis is applied on the MVAIs in order to to map actions to a discriminant feature space where actions are classified by using a simple nearest class centroid classification scheme. Experimental results denote the effectiveness of the proposed action recognition approach.","PeriodicalId":170714,"journal":{"name":"IVMSP 2013","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"View-independent human action recognition based on multi-view action images and discriminant learning\",\"authors\":\"Alexandros Iosifidis, A. Tefas, I. Pitas\",\"doi\":\"10.1109/IVMSPW.2013.6611931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a novel view-independent human action recognition method is proposed. A multi-camera setup is used to capture the human body from different viewing angles. Actions are described by a novel action representation, the so-called multi-view action image (MVAI), which effectively addresses the camera viewpoint identification problem, i.e., the identification of the position of each camera with respect to the person's body. Linear Discriminant Analysis is applied on the MVAIs in order to to map actions to a discriminant feature space where actions are classified by using a simple nearest class centroid classification scheme. Experimental results denote the effectiveness of the proposed action recognition approach.\",\"PeriodicalId\":170714,\"journal\":{\"name\":\"IVMSP 2013\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IVMSP 2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVMSPW.2013.6611931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IVMSP 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVMSPW.2013.6611931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种新的视觉无关的人体动作识别方法。多摄像头装置用于从不同视角捕捉人体。动作通过一种新的动作表示来描述,即所谓的多视图动作图像(MVAI),它有效地解决了摄像机视点识别问题,即识别每个摄像机相对于人的身体的位置。将线性判别分析应用于mvai,将动作映射到判别特征空间,在判别特征空间中使用简单的最近类质心分类方案对动作进行分类。实验结果表明了所提出的动作识别方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
View-independent human action recognition based on multi-view action images and discriminant learning
In this paper a novel view-independent human action recognition method is proposed. A multi-camera setup is used to capture the human body from different viewing angles. Actions are described by a novel action representation, the so-called multi-view action image (MVAI), which effectively addresses the camera viewpoint identification problem, i.e., the identification of the position of each camera with respect to the person's body. Linear Discriminant Analysis is applied on the MVAIs in order to to map actions to a discriminant feature space where actions are classified by using a simple nearest class centroid classification scheme. Experimental results denote the effectiveness of the proposed action recognition approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信