并行- narx循环网络用于长期混沌财务预测的实证分析

S. J. Abdulkadir, S. Yong
{"title":"并行- narx循环网络用于长期混沌财务预测的实证分析","authors":"S. J. Abdulkadir, S. Yong","doi":"10.1109/ICCOINS.2014.6868354","DOIUrl":null,"url":null,"abstract":"Financial data are characterized by non-linearity, noise, volatility and are chaotic in nature thus making the process of forecasting cumbersome. The main aim of forecasters is to develop an approach that focuses on increasing profit by being able to forecast future stock prices based on current stock data. This paper presents an empirical long term chaotic financial forecasting approach using Parallel non-linear auto-regressive with exogenous input (P-NARX) network trained with Bayesian regulation algorithm. The experimental results based on mean absolute percentage error (MAPE) and other forecasting error metrics shows that P-NARX network trained with Bayesian regulation slightly outperforms Levenberg-marquardt, Resilient back-propagation and one-step-secant training algorithm in forecasting daily Kuala Lumpur Composite Indices.","PeriodicalId":368100,"journal":{"name":"2014 International Conference on Computer and Information Sciences (ICCOINS)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Empirical analysis of parallel-NARX recurrent network for long-term chaotic financial forecasting\",\"authors\":\"S. J. Abdulkadir, S. Yong\",\"doi\":\"10.1109/ICCOINS.2014.6868354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Financial data are characterized by non-linearity, noise, volatility and are chaotic in nature thus making the process of forecasting cumbersome. The main aim of forecasters is to develop an approach that focuses on increasing profit by being able to forecast future stock prices based on current stock data. This paper presents an empirical long term chaotic financial forecasting approach using Parallel non-linear auto-regressive with exogenous input (P-NARX) network trained with Bayesian regulation algorithm. The experimental results based on mean absolute percentage error (MAPE) and other forecasting error metrics shows that P-NARX network trained with Bayesian regulation slightly outperforms Levenberg-marquardt, Resilient back-propagation and one-step-secant training algorithm in forecasting daily Kuala Lumpur Composite Indices.\",\"PeriodicalId\":368100,\"journal\":{\"name\":\"2014 International Conference on Computer and Information Sciences (ICCOINS)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Computer and Information Sciences (ICCOINS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCOINS.2014.6868354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Computer and Information Sciences (ICCOINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCOINS.2014.6868354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

金融数据具有非线性、噪声、波动性和混沌性等特点,使得预测过程十分繁琐。预测者的主要目标是开发一种方法,通过能够根据当前股票数据预测未来的股票价格来增加利润。本文提出了一种基于贝叶斯调节算法训练的具有外生输入的并行非线性自回归(P-NARX)网络的经验长期混沌金融预测方法。基于平均绝对百分比误差(MAPE)和其他预测误差指标的实验结果表明,使用贝叶斯调节训练的P-NARX网络在预测吉隆坡综合指数方面略优于Levenberg-marquardt、弹性反向传播和一步割线训练算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical analysis of parallel-NARX recurrent network for long-term chaotic financial forecasting
Financial data are characterized by non-linearity, noise, volatility and are chaotic in nature thus making the process of forecasting cumbersome. The main aim of forecasters is to develop an approach that focuses on increasing profit by being able to forecast future stock prices based on current stock data. This paper presents an empirical long term chaotic financial forecasting approach using Parallel non-linear auto-regressive with exogenous input (P-NARX) network trained with Bayesian regulation algorithm. The experimental results based on mean absolute percentage error (MAPE) and other forecasting error metrics shows that P-NARX network trained with Bayesian regulation slightly outperforms Levenberg-marquardt, Resilient back-propagation and one-step-secant training algorithm in forecasting daily Kuala Lumpur Composite Indices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信