面向多视图降维的广义多流形图集成嵌入

Sumet mehta
{"title":"面向多视图降维的广义多流形图集成嵌入","authors":"Sumet mehta","doi":"10.54692/lgurjcsit.2020.0404109","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new dimension reduction (DR) algorithm called ensemble graph-based locality preserving projections (EGLPP); to overcome the neighborhood size k sensitivity in locally preserving projections (LPP). EGLPP constructs a homogeneous ensemble of adjacency graphs by varying neighborhood size k and finally uses the integrated embedded graph to optimize the low-dimensional projections. Furthermore, to appropriately handle the intrinsic geometrical structure of the multi-view data and overcome the dimensionality curse, we propose a generalized multi-manifold graph ensemble embedding framework (MLGEE). MLGEE aims to utilize multi-manifold graphs for the adjacency estimation with automatically weight each manifold to derive the integrated heterogeneous graph. Experimental results on various computer vision databases verify the effectiveness of proposed EGLPP and MLGEE over existing comparative DR methods.","PeriodicalId":197260,"journal":{"name":"Lahore Garrison University Research Journal of Computer Science and Information Technology","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalized Multi-manifold Graph Ensemble Embedding for Multi-View Dimensionality Reduction\",\"authors\":\"Sumet mehta\",\"doi\":\"10.54692/lgurjcsit.2020.0404109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new dimension reduction (DR) algorithm called ensemble graph-based locality preserving projections (EGLPP); to overcome the neighborhood size k sensitivity in locally preserving projections (LPP). EGLPP constructs a homogeneous ensemble of adjacency graphs by varying neighborhood size k and finally uses the integrated embedded graph to optimize the low-dimensional projections. Furthermore, to appropriately handle the intrinsic geometrical structure of the multi-view data and overcome the dimensionality curse, we propose a generalized multi-manifold graph ensemble embedding framework (MLGEE). MLGEE aims to utilize multi-manifold graphs for the adjacency estimation with automatically weight each manifold to derive the integrated heterogeneous graph. Experimental results on various computer vision databases verify the effectiveness of proposed EGLPP and MLGEE over existing comparative DR methods.\",\"PeriodicalId\":197260,\"journal\":{\"name\":\"Lahore Garrison University Research Journal of Computer Science and Information Technology\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lahore Garrison University Research Journal of Computer Science and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54692/lgurjcsit.2020.0404109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lahore Garrison University Research Journal of Computer Science and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54692/lgurjcsit.2020.0404109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的降维算法——基于集成图的局域保持投影(EGLPP);克服局部保持投影(LPP)中邻域大小k的敏感性。EGLPP通过改变邻域大小k来构造邻接图的齐次集合,最后利用集成的嵌入图对低维投影进行优化。此外,为了适当处理多视图数据的固有几何结构,克服维数诅咒,提出了广义多流形图集成嵌入框架(MLGEE)。MLGEE的目标是利用多流形图进行邻接估计,并自动对每个流形进行加权,从而得到综合的异构图。在各种计算机视觉数据库上的实验结果验证了所提出的EGLPP和MLGEE比现有的比较DR方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Multi-manifold Graph Ensemble Embedding for Multi-View Dimensionality Reduction
In this paper, we propose a new dimension reduction (DR) algorithm called ensemble graph-based locality preserving projections (EGLPP); to overcome the neighborhood size k sensitivity in locally preserving projections (LPP). EGLPP constructs a homogeneous ensemble of adjacency graphs by varying neighborhood size k and finally uses the integrated embedded graph to optimize the low-dimensional projections. Furthermore, to appropriately handle the intrinsic geometrical structure of the multi-view data and overcome the dimensionality curse, we propose a generalized multi-manifold graph ensemble embedding framework (MLGEE). MLGEE aims to utilize multi-manifold graphs for the adjacency estimation with automatically weight each manifold to derive the integrated heterogeneous graph. Experimental results on various computer vision databases verify the effectiveness of proposed EGLPP and MLGEE over existing comparative DR methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信