Daichi Fujiki, Hiroki Matsutani, M. Koibuchi, H. Amano
{"title":"低延迟处理器-存储器通信的随机分组存储器网络","authors":"Daichi Fujiki, Hiroki Matsutani, M. Koibuchi, H. Amano","doi":"10.1109/PDP.2016.18","DOIUrl":null,"url":null,"abstract":"Three-dimensional stacked memory is considered to be one of the innovative elements for the next-generation computing system, for it provides high bandwidth and energy efficiency. Particularly, packet routing ability of Hybrid Memory Cubes (HMCs) enables new interconnects for the memories, giving flexibility to its topological design space. Since memory-processor communication is latency-sensitive, our challenge is to alleviate latency of the memory interconnection network, which is subject to high overheads from hop-count increase. Interestingly, random network topologies are known to have remarkably low diameter that is even comparable to theoretical Moore graph. In this context, we first propose to exploit the random topologies for the memory networks. Second, we also propose several optimizations to leverage the random topologies to be further adaptive to the latency-sensitive memory-processor communication: communication path length based selection, deterministic minimal routing, and page-size granularity memory mapping. Finally, we present interesting results of our evaluation: the random networks with universal memory access outperformed non-random networks of which memory access was optimally localized.","PeriodicalId":192273,"journal":{"name":"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Randomizing Packet Memory Networks for Low-Latency Processor-Memory Communication\",\"authors\":\"Daichi Fujiki, Hiroki Matsutani, M. Koibuchi, H. Amano\",\"doi\":\"10.1109/PDP.2016.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-dimensional stacked memory is considered to be one of the innovative elements for the next-generation computing system, for it provides high bandwidth and energy efficiency. Particularly, packet routing ability of Hybrid Memory Cubes (HMCs) enables new interconnects for the memories, giving flexibility to its topological design space. Since memory-processor communication is latency-sensitive, our challenge is to alleviate latency of the memory interconnection network, which is subject to high overheads from hop-count increase. Interestingly, random network topologies are known to have remarkably low diameter that is even comparable to theoretical Moore graph. In this context, we first propose to exploit the random topologies for the memory networks. Second, we also propose several optimizations to leverage the random topologies to be further adaptive to the latency-sensitive memory-processor communication: communication path length based selection, deterministic minimal routing, and page-size granularity memory mapping. Finally, we present interesting results of our evaluation: the random networks with universal memory access outperformed non-random networks of which memory access was optimally localized.\",\"PeriodicalId\":192273,\"journal\":{\"name\":\"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDP.2016.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2016.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Randomizing Packet Memory Networks for Low-Latency Processor-Memory Communication
Three-dimensional stacked memory is considered to be one of the innovative elements for the next-generation computing system, for it provides high bandwidth and energy efficiency. Particularly, packet routing ability of Hybrid Memory Cubes (HMCs) enables new interconnects for the memories, giving flexibility to its topological design space. Since memory-processor communication is latency-sensitive, our challenge is to alleviate latency of the memory interconnection network, which is subject to high overheads from hop-count increase. Interestingly, random network topologies are known to have remarkably low diameter that is even comparable to theoretical Moore graph. In this context, we first propose to exploit the random topologies for the memory networks. Second, we also propose several optimizations to leverage the random topologies to be further adaptive to the latency-sensitive memory-processor communication: communication path length based selection, deterministic minimal routing, and page-size granularity memory mapping. Finally, we present interesting results of our evaluation: the random networks with universal memory access outperformed non-random networks of which memory access was optimally localized.