{"title":"用于fpga的纳米级量子点元胞自动机可配置逻辑块的设计","authors":"Hemant Balijepalli, M. Niamat","doi":"10.1109/MWSCAS.2012.6292097","DOIUrl":null,"url":null,"abstract":"This paper presents a novel design of a Configurable Logic Block (CLB) for a Field Programmable Gate Array (FPGA) based on a computing scheme in nanoscale technology called the Quantum-dot Cellular Automata (QCA). In QCA technology, the cells made of quantum dots transmit information from one cell to the other based on Coulombic repulsion between the electrons. The main goal behind the design of the CLB is to ultimately design a miniscule nano FPGA without transistors for the `beyond CMOS era' of the 2020s. Unlike previous research in this area, the attempt here is to take advantage of the unique QCA features in building the architecture. It is found that the proposed CLB has less latency and occupies less number of cells as compared to earlier designs. Different components of the CLB including a (4×16) decoder, a D-latch, a multiplexer and an RS-flip flop are designed, and simulated using the QCADesigner tool for functional correctness.","PeriodicalId":324891,"journal":{"name":"2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Design of a nanoscale Quantum-dot Cellular Automata Configurable Logic Block for FPGAs\",\"authors\":\"Hemant Balijepalli, M. Niamat\",\"doi\":\"10.1109/MWSCAS.2012.6292097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel design of a Configurable Logic Block (CLB) for a Field Programmable Gate Array (FPGA) based on a computing scheme in nanoscale technology called the Quantum-dot Cellular Automata (QCA). In QCA technology, the cells made of quantum dots transmit information from one cell to the other based on Coulombic repulsion between the electrons. The main goal behind the design of the CLB is to ultimately design a miniscule nano FPGA without transistors for the `beyond CMOS era' of the 2020s. Unlike previous research in this area, the attempt here is to take advantage of the unique QCA features in building the architecture. It is found that the proposed CLB has less latency and occupies less number of cells as compared to earlier designs. Different components of the CLB including a (4×16) decoder, a D-latch, a multiplexer and an RS-flip flop are designed, and simulated using the QCADesigner tool for functional correctness.\",\"PeriodicalId\":324891,\"journal\":{\"name\":\"2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2012.6292097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2012.6292097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a nanoscale Quantum-dot Cellular Automata Configurable Logic Block for FPGAs
This paper presents a novel design of a Configurable Logic Block (CLB) for a Field Programmable Gate Array (FPGA) based on a computing scheme in nanoscale technology called the Quantum-dot Cellular Automata (QCA). In QCA technology, the cells made of quantum dots transmit information from one cell to the other based on Coulombic repulsion between the electrons. The main goal behind the design of the CLB is to ultimately design a miniscule nano FPGA without transistors for the `beyond CMOS era' of the 2020s. Unlike previous research in this area, the attempt here is to take advantage of the unique QCA features in building the architecture. It is found that the proposed CLB has less latency and occupies less number of cells as compared to earlier designs. Different components of the CLB including a (4×16) decoder, a D-latch, a multiplexer and an RS-flip flop are designed, and simulated using the QCADesigner tool for functional correctness.