一种改进的基于局部特征的深度学习单目SLAM方法

Rui Yu, Chenhai Long, Guoliang Ma, Jianpo Guo, Lisong Xu, Zhaoli Guo
{"title":"一种改进的基于局部特征的深度学习单目SLAM方法","authors":"Rui Yu, Chenhai Long, Guoliang Ma, Jianpo Guo, Lisong Xu, Zhaoli Guo","doi":"10.1117/12.2667711","DOIUrl":null,"url":null,"abstract":"To improve the tracking performance of the Simultaneous Localization and Mapping (SLAM) system, this paper presents a monocular visual SLAM method based on deep learning second order similarity of local features. The local features are generated into descriptors from patches around key points in a frame using a deep neural network. It is applied to tracking, re-localization, and loop closure module to enhance data association. We also train a visual bag of words model to adapt to the local descriptors. Additionally, we use two adaptive strategies to improve the proposed method, one strategy refines key points detection with illumination intensity, and the other strategy reduces the possibility of tracking lost based on the ratio of outliers’ number in feature matching. We evaluate our method on two public datasets. The experimental results demonstrate the effectiveness of the system and also show that the adaptive strategies can increase tracking performance and improve the robustness in challenging conditions.","PeriodicalId":345723,"journal":{"name":"Fifth International Conference on Computer Information Science and Artificial Intelligence","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved deep-learning monocular visual SLAM method based on local features\",\"authors\":\"Rui Yu, Chenhai Long, Guoliang Ma, Jianpo Guo, Lisong Xu, Zhaoli Guo\",\"doi\":\"10.1117/12.2667711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the tracking performance of the Simultaneous Localization and Mapping (SLAM) system, this paper presents a monocular visual SLAM method based on deep learning second order similarity of local features. The local features are generated into descriptors from patches around key points in a frame using a deep neural network. It is applied to tracking, re-localization, and loop closure module to enhance data association. We also train a visual bag of words model to adapt to the local descriptors. Additionally, we use two adaptive strategies to improve the proposed method, one strategy refines key points detection with illumination intensity, and the other strategy reduces the possibility of tracking lost based on the ratio of outliers’ number in feature matching. We evaluate our method on two public datasets. The experimental results demonstrate the effectiveness of the system and also show that the adaptive strategies can increase tracking performance and improve the robustness in challenging conditions.\",\"PeriodicalId\":345723,\"journal\":{\"name\":\"Fifth International Conference on Computer Information Science and Artificial Intelligence\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on Computer Information Science and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2667711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Computer Information Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2667711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高同步定位与映射(SLAM)系统的跟踪性能,提出了一种基于深度学习局部特征二阶相似度的单目视觉SLAM方法。局部特征通过深度神经网络从帧中关键点周围的补丁生成描述符。将其应用于跟踪、重新定位和闭环模块中,以增强数据关联。我们还训练了一个视觉词袋模型来适应局部描述符。此外,我们还使用了两种自适应策略来改进所提出的方法,一种策略是根据光照强度来改进关键点的检测,另一种策略是根据特征匹配中离群值数量的比例来降低跟踪丢失的可能性。我们在两个公共数据集上评估了我们的方法。实验结果证明了系统的有效性,也表明自适应策略可以提高跟踪性能,并提高在挑战性条件下的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved deep-learning monocular visual SLAM method based on local features
To improve the tracking performance of the Simultaneous Localization and Mapping (SLAM) system, this paper presents a monocular visual SLAM method based on deep learning second order similarity of local features. The local features are generated into descriptors from patches around key points in a frame using a deep neural network. It is applied to tracking, re-localization, and loop closure module to enhance data association. We also train a visual bag of words model to adapt to the local descriptors. Additionally, we use two adaptive strategies to improve the proposed method, one strategy refines key points detection with illumination intensity, and the other strategy reduces the possibility of tracking lost based on the ratio of outliers’ number in feature matching. We evaluate our method on two public datasets. The experimental results demonstrate the effectiveness of the system and also show that the adaptive strategies can increase tracking performance and improve the robustness in challenging conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信