一种带误差修正的风速预报混合模型

Tathiana M. Barchi, L. F. P. Costa, E. Puchta, M. Martins, M. L. Andrade, P. S. D. M. Neto, H. Siqueira
{"title":"一种带误差修正的风速预报混合模型","authors":"Tathiana M. Barchi, L. F. P. Costa, E. Puchta, M. Martins, M. L. Andrade, P. S. D. M. Neto, H. Siqueira","doi":"10.1109/LA-CCI48322.2021.9769818","DOIUrl":null,"url":null,"abstract":"In recent times wind energy generation has stood out due its integration with traditional electricity grids. Many investigations addressed wind speed forecasting since it presents high volatile and intermittent behavior. Due to this, such a source shows accuracy challenges in relation to its prediction. In this work, a hybrid model based on error correction is proposed, combining the linear Autoregressive and Moving average (ARMA) model and the Multilayer Perceptron (MLP). The approaches was applied in two databases referring to the Brazilian northeast -a prominent region in wind energy. The results reveal that the proposed hybrid model showed good results in comparison to linear and neural-based methods.","PeriodicalId":431041,"journal":{"name":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Model With Error Correction for Wind Speed Forecasting\",\"authors\":\"Tathiana M. Barchi, L. F. P. Costa, E. Puchta, M. Martins, M. L. Andrade, P. S. D. M. Neto, H. Siqueira\",\"doi\":\"10.1109/LA-CCI48322.2021.9769818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent times wind energy generation has stood out due its integration with traditional electricity grids. Many investigations addressed wind speed forecasting since it presents high volatile and intermittent behavior. Due to this, such a source shows accuracy challenges in relation to its prediction. In this work, a hybrid model based on error correction is proposed, combining the linear Autoregressive and Moving average (ARMA) model and the Multilayer Perceptron (MLP). The approaches was applied in two databases referring to the Brazilian northeast -a prominent region in wind energy. The results reveal that the proposed hybrid model showed good results in comparison to linear and neural-based methods.\",\"PeriodicalId\":431041,\"journal\":{\"name\":\"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LA-CCI48322.2021.9769818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI48322.2021.9769818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,风能发电因其与传统电网的整合而脱颖而出。由于风速预报具有高波动性和间歇性,因此许多研究都涉及风速预报。因此,这种来源在其预测方面显示出准确性挑战。本文提出了一种基于误差校正的混合模型,将线性自回归和移动平均(ARMA)模型与多层感知器(MLP)相结合。这些方法被应用于涉及巴西东北部的两个数据库中,这是一个风能突出的地区。结果表明,与基于线性和神经网络的方法相比,该混合模型具有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Model With Error Correction for Wind Speed Forecasting
In recent times wind energy generation has stood out due its integration with traditional electricity grids. Many investigations addressed wind speed forecasting since it presents high volatile and intermittent behavior. Due to this, such a source shows accuracy challenges in relation to its prediction. In this work, a hybrid model based on error correction is proposed, combining the linear Autoregressive and Moving average (ARMA) model and the Multilayer Perceptron (MLP). The approaches was applied in two databases referring to the Brazilian northeast -a prominent region in wind energy. The results reveal that the proposed hybrid model showed good results in comparison to linear and neural-based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信