{"title":"异构计算的并行专用硬件设备","authors":"A. Marongiu, P. Palazzari, V. Rosato","doi":"10.1145/582034.582063","DOIUrl":null,"url":null,"abstract":"We describe a design methodology which allows a fast design and prototyping of dedicated hardware devices to be used in heterogeneous computations. The platforms used in heterogeneous computations consist of a general-purpose COTS architecture which hosts a dedicated hardware device; parts of the computation are mapped onto the former, parts onto the latter, in a way to improve the overall computation efficiency. We report the design and the prototyping of a FPGA-based hardware board to be used in the search of low-autocorrelation binary sequences. The circuit has been designed by using a recently developed Parallel Hardware Generator (PHG) package which produces a synthesizable VHDL code starting from the specific algorithm expressed as a System of Affine Recurrence Equations (SARE). The performance of the realized devices has been compared to those obtained on the same numerical application on several computational platforms.","PeriodicalId":325282,"journal":{"name":"ACM/IEEE SC 2001 Conference (SC'01)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parallel Dedicated Hardware Devices for Heterogeneous Computations\",\"authors\":\"A. Marongiu, P. Palazzari, V. Rosato\",\"doi\":\"10.1145/582034.582063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a design methodology which allows a fast design and prototyping of dedicated hardware devices to be used in heterogeneous computations. The platforms used in heterogeneous computations consist of a general-purpose COTS architecture which hosts a dedicated hardware device; parts of the computation are mapped onto the former, parts onto the latter, in a way to improve the overall computation efficiency. We report the design and the prototyping of a FPGA-based hardware board to be used in the search of low-autocorrelation binary sequences. The circuit has been designed by using a recently developed Parallel Hardware Generator (PHG) package which produces a synthesizable VHDL code starting from the specific algorithm expressed as a System of Affine Recurrence Equations (SARE). The performance of the realized devices has been compared to those obtained on the same numerical application on several computational platforms.\",\"PeriodicalId\":325282,\"journal\":{\"name\":\"ACM/IEEE SC 2001 Conference (SC'01)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE SC 2001 Conference (SC'01)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/582034.582063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2001 Conference (SC'01)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/582034.582063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parallel Dedicated Hardware Devices for Heterogeneous Computations
We describe a design methodology which allows a fast design and prototyping of dedicated hardware devices to be used in heterogeneous computations. The platforms used in heterogeneous computations consist of a general-purpose COTS architecture which hosts a dedicated hardware device; parts of the computation are mapped onto the former, parts onto the latter, in a way to improve the overall computation efficiency. We report the design and the prototyping of a FPGA-based hardware board to be used in the search of low-autocorrelation binary sequences. The circuit has been designed by using a recently developed Parallel Hardware Generator (PHG) package which produces a synthesizable VHDL code starting from the specific algorithm expressed as a System of Affine Recurrence Equations (SARE). The performance of the realized devices has been compared to those obtained on the same numerical application on several computational platforms.