R. M. D'Addio, M. Conrado, S. O. Rezende, M. Manzato
{"title":"基于用户评论的鲁棒术语提取生成推荐","authors":"R. M. D'Addio, M. Conrado, S. O. Rezende, M. Manzato","doi":"10.1145/2664551.2664583","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a technique to automatically describe items based on users' reviews in order to be used by recommender systems. For that, we extract items' features using a robust term extraction method that applies transductive semi-supervised learning to automatically identify aspects that represent the different subjects of the reviews. Then, we apply sentiment analysis in a sentence level to indicate the polarities, yielding a consensus of users regarding the features of items. Our approach is evaluated using a collaborative filtering method, and comparisons using structured metadata as baselines show promising results.","PeriodicalId":114454,"journal":{"name":"Brazilian Symposium on Multimedia and the Web","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Generating Recommendations Based on Robust Term Extraction from Users' Reviews\",\"authors\":\"R. M. D'Addio, M. Conrado, S. O. Rezende, M. Manzato\",\"doi\":\"10.1145/2664551.2664583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a technique to automatically describe items based on users' reviews in order to be used by recommender systems. For that, we extract items' features using a robust term extraction method that applies transductive semi-supervised learning to automatically identify aspects that represent the different subjects of the reviews. Then, we apply sentiment analysis in a sentence level to indicate the polarities, yielding a consensus of users regarding the features of items. Our approach is evaluated using a collaborative filtering method, and comparisons using structured metadata as baselines show promising results.\",\"PeriodicalId\":114454,\"journal\":{\"name\":\"Brazilian Symposium on Multimedia and the Web\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Symposium on Multimedia and the Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2664551.2664583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Symposium on Multimedia and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2664551.2664583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generating Recommendations Based on Robust Term Extraction from Users' Reviews
In this paper, we propose a technique to automatically describe items based on users' reviews in order to be used by recommender systems. For that, we extract items' features using a robust term extraction method that applies transductive semi-supervised learning to automatically identify aspects that represent the different subjects of the reviews. Then, we apply sentiment analysis in a sentence level to indicate the polarities, yielding a consensus of users regarding the features of items. Our approach is evaluated using a collaborative filtering method, and comparisons using structured metadata as baselines show promising results.