深度学习:一种利用胸部x线摄影检测结核病的潜在方法

Rahul Hooda, S. Sofat, Simranpreet Kaur, Ajay Mittal, F. Mériaudeau
{"title":"深度学习:一种利用胸部x线摄影检测结核病的潜在方法","authors":"Rahul Hooda, S. Sofat, Simranpreet Kaur, Ajay Mittal, F. Mériaudeau","doi":"10.1109/ICSIPA.2017.8120663","DOIUrl":null,"url":null,"abstract":"Tuberculosis (TB) is a major health threat in the developing countries. Many patients die every year due to lack of treatment and error in diagnosis. Developing a computer-aided diagnosis (CAD) system for TB detection can help in early diagnosis and containing the disease. Most of the current CAD systems use handcrafted features, however, lately there is a shift towards deep-learning-based automatic feature extractors. In this paper, we present a potential method for tuberculosis detection using deep-learning which classifies CXR images into two categories, that is, normal and abnormal. We have used CNN architecture with 7 convolutional layers and 3 fully connected layers. The performance of three different optimizers has been compared. Out of these, Adam optimizer with an overall accuracy of 94.73% and validation accuracy of 82.09% performed best amongst them. All the results are obtained using Montgomery and Shenzhen datasets which are available in public domain.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"Deep-learning: A potential method for tuberculosis detection using chest radiography\",\"authors\":\"Rahul Hooda, S. Sofat, Simranpreet Kaur, Ajay Mittal, F. Mériaudeau\",\"doi\":\"10.1109/ICSIPA.2017.8120663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tuberculosis (TB) is a major health threat in the developing countries. Many patients die every year due to lack of treatment and error in diagnosis. Developing a computer-aided diagnosis (CAD) system for TB detection can help in early diagnosis and containing the disease. Most of the current CAD systems use handcrafted features, however, lately there is a shift towards deep-learning-based automatic feature extractors. In this paper, we present a potential method for tuberculosis detection using deep-learning which classifies CXR images into two categories, that is, normal and abnormal. We have used CNN architecture with 7 convolutional layers and 3 fully connected layers. The performance of three different optimizers has been compared. Out of these, Adam optimizer with an overall accuracy of 94.73% and validation accuracy of 82.09% performed best amongst them. All the results are obtained using Montgomery and Shenzhen datasets which are available in public domain.\",\"PeriodicalId\":268112,\"journal\":{\"name\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2017.8120663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

摘要

结核病是发展中国家的一个主要健康威胁。由于缺乏治疗和诊断错误,每年都有许多患者死亡。开发用于结核病检测的计算机辅助诊断(CAD)系统可以帮助早期诊断和控制疾病。目前大多数CAD系统都使用手工制作的特征,然而,最近有一种转向基于深度学习的自动特征提取器。在本文中,我们提出了一种利用深度学习将CXR图像分为正常和异常两类的潜在结核病检测方法。我们使用了具有7个卷积层和3个全连接层的CNN架构。比较了三种不同优化器的性能。其中,Adam优化器的总体准确率为94.73%,验证准确率为82.09%。所有结果均使用Montgomery和Shenzhen数据集获得,这些数据集可在公共领域获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep-learning: A potential method for tuberculosis detection using chest radiography
Tuberculosis (TB) is a major health threat in the developing countries. Many patients die every year due to lack of treatment and error in diagnosis. Developing a computer-aided diagnosis (CAD) system for TB detection can help in early diagnosis and containing the disease. Most of the current CAD systems use handcrafted features, however, lately there is a shift towards deep-learning-based automatic feature extractors. In this paper, we present a potential method for tuberculosis detection using deep-learning which classifies CXR images into two categories, that is, normal and abnormal. We have used CNN architecture with 7 convolutional layers and 3 fully connected layers. The performance of three different optimizers has been compared. Out of these, Adam optimizer with an overall accuracy of 94.73% and validation accuracy of 82.09% performed best amongst them. All the results are obtained using Montgomery and Shenzhen datasets which are available in public domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信