基于全局最小生成树的多类贝叶斯误差估计

S. Y. Sekeh, Brandon Oselio, A. Hero
{"title":"基于全局最小生成树的多类贝叶斯误差估计","authors":"S. Y. Sekeh, Brandon Oselio, A. Hero","doi":"10.1109/ALLERTON.2018.8635642","DOIUrl":null,"url":null,"abstract":"Henze-Penrose (HP) divergence has been used in many information theory, statistics and machine learning contexts, including the estimation of two-class Bayes classification error. Previous work has shown HP divergence can be directly estimated using the Friedman-Rafsky (FR) multivariate run test statistic. For the multi-class classification problem, HP divergence can also be used to bound the Bayes error by estimating the sum of pairwise Bayes errors between classes. In situations in which the dataset and number of classes are large, this approach is infeasible. In this paper, we present a new generalized measure that allows us to estimate the Bayes error rate without the need to compute pairwise estimates. We compare our new approach with the pairwise HP bound and the bound proposed by Lin [1], and show that our upper bound on Bayes error is tighter, while also having lower computational complexity.","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Multi-class Bayes error estimation with a global minimal spanning tree\",\"authors\":\"S. Y. Sekeh, Brandon Oselio, A. Hero\",\"doi\":\"10.1109/ALLERTON.2018.8635642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Henze-Penrose (HP) divergence has been used in many information theory, statistics and machine learning contexts, including the estimation of two-class Bayes classification error. Previous work has shown HP divergence can be directly estimated using the Friedman-Rafsky (FR) multivariate run test statistic. For the multi-class classification problem, HP divergence can also be used to bound the Bayes error by estimating the sum of pairwise Bayes errors between classes. In situations in which the dataset and number of classes are large, this approach is infeasible. In this paper, we present a new generalized measure that allows us to estimate the Bayes error rate without the need to compute pairwise estimates. We compare our new approach with the pairwise HP bound and the bound proposed by Lin [1], and show that our upper bound on Bayes error is tighter, while also having lower computational complexity.\",\"PeriodicalId\":299280,\"journal\":{\"name\":\"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2018.8635642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8635642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

Henze-Penrose (HP)散度已被广泛应用于信息论、统计学和机器学习等领域,包括两类贝叶斯分类误差的估计。先前的研究表明,HP散度可以直接估计使用弗里德曼-拉夫斯基(FR)多元运行检验统计量。对于多类分类问题,HP散度也可以通过估计类间成对贝叶斯误差之和来约束贝叶斯误差。在数据集和类的数量都很大的情况下,这种方法是不可行的。在本文中,我们提出了一个新的广义度量,使我们能够估计贝叶斯错误率,而不需要计算两两估计。我们将我们的新方法与两两HP界和Lin[1]提出的界进行了比较,表明我们的贝叶斯误差上界更严格,同时计算复杂度也更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-class Bayes error estimation with a global minimal spanning tree
Henze-Penrose (HP) divergence has been used in many information theory, statistics and machine learning contexts, including the estimation of two-class Bayes classification error. Previous work has shown HP divergence can be directly estimated using the Friedman-Rafsky (FR) multivariate run test statistic. For the multi-class classification problem, HP divergence can also be used to bound the Bayes error by estimating the sum of pairwise Bayes errors between classes. In situations in which the dataset and number of classes are large, this approach is infeasible. In this paper, we present a new generalized measure that allows us to estimate the Bayes error rate without the need to compute pairwise estimates. We compare our new approach with the pairwise HP bound and the bound proposed by Lin [1], and show that our upper bound on Bayes error is tighter, while also having lower computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信