利用加速度振动梁加速度计技术进行精密重力测量

B. Norling
{"title":"利用加速度振动梁加速度计技术进行精密重力测量","authors":"B. Norling","doi":"10.1109/PLANS.1990.66221","DOIUrl":null,"url":null,"abstract":"Tests run using Sundstrand vibrating beam accelerometers to sense microgravity are described. Lunar-solar tidal effects were used as a highly predictable signal which varies by approximately 200 billionths of the full-scale gravitation level. Test runs of 48-h duration were used to evaluate stability, resolution, and noise. Test results on the Accelerex accelerometer show accuracies suitable for precision applications such as gravity mapping and gravity density logging. The test results indicate that Accelerex technology, even with an instrument design and signal processing approach not optimized for microgravity measurement, can achieve 48-ngg (1 sigma ) or better accuracy over a 48-h period. This value includes contributions from instrument noise and random walk, combined bias and scale factor drift, and thermal modeling errors as well as external contributions from sampling noise, test equipment inaccuracies, electrical noise, and cultural noise induced acceleration.<<ETX>>","PeriodicalId":156436,"journal":{"name":"IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Precision gravity measurement utilizing Accelerex vibrating beam accelerometer technology\",\"authors\":\"B. Norling\",\"doi\":\"10.1109/PLANS.1990.66221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tests run using Sundstrand vibrating beam accelerometers to sense microgravity are described. Lunar-solar tidal effects were used as a highly predictable signal which varies by approximately 200 billionths of the full-scale gravitation level. Test runs of 48-h duration were used to evaluate stability, resolution, and noise. Test results on the Accelerex accelerometer show accuracies suitable for precision applications such as gravity mapping and gravity density logging. The test results indicate that Accelerex technology, even with an instrument design and signal processing approach not optimized for microgravity measurement, can achieve 48-ngg (1 sigma ) or better accuracy over a 48-h period. This value includes contributions from instrument noise and random walk, combined bias and scale factor drift, and thermal modeling errors as well as external contributions from sampling noise, test equipment inaccuracies, electrical noise, and cultural noise induced acceleration.<<ETX>>\",\"PeriodicalId\":156436,\"journal\":{\"name\":\"IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.1990.66221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.1990.66221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

介绍了用Sundstrand振动梁加速度计检测微重力的试验情况。月日潮汐效应被用作高度可预测的信号,其变化幅度约为全尺寸引力水平的2000亿分之一。使用持续48小时的测试运行来评估稳定性、分辨率和噪声。加速度计的测试结果表明,加速度计的精度适用于重力测绘和重力密度测井等精密应用。测试结果表明,即使采用未针对微重力测量优化的仪器设计和信号处理方法,Accelerex技术也可以在48小时内达到48-ngg (1 sigma)或更高的精度。该值包括仪器噪声和随机游走、组合偏差和比例因子漂移、热建模误差以及采样噪声、测试设备不准确性、电气噪声和文化噪声引起的加速度等外部贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Precision gravity measurement utilizing Accelerex vibrating beam accelerometer technology
Tests run using Sundstrand vibrating beam accelerometers to sense microgravity are described. Lunar-solar tidal effects were used as a highly predictable signal which varies by approximately 200 billionths of the full-scale gravitation level. Test runs of 48-h duration were used to evaluate stability, resolution, and noise. Test results on the Accelerex accelerometer show accuracies suitable for precision applications such as gravity mapping and gravity density logging. The test results indicate that Accelerex technology, even with an instrument design and signal processing approach not optimized for microgravity measurement, can achieve 48-ngg (1 sigma ) or better accuracy over a 48-h period. This value includes contributions from instrument noise and random walk, combined bias and scale factor drift, and thermal modeling errors as well as external contributions from sampling noise, test equipment inaccuracies, electrical noise, and cultural noise induced acceleration.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信