分布式优化的类谱梯度方法

D. Jakovetić, N. Krejić, N. K. Jerinkić
{"title":"分布式优化的类谱梯度方法","authors":"D. Jakovetić, N. Krejić, N. K. Jerinkić","doi":"10.1109/EUROCON.2019.8861761","DOIUrl":null,"url":null,"abstract":"We consider a standard distributed multi-agent optimization setting where n nodes (agents) in a network minimize the aggregate sum of their local convex cost functions. We present a distributed spectral-like gradient method, wherein stepsizes are node-and iteration-varying, and they are inspired by classical spectral methods from centralized optimization. Simulation examples illustrate the performance of the presented method.","PeriodicalId":232097,"journal":{"name":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral-like gradient method for distributed optimization\",\"authors\":\"D. Jakovetić, N. Krejić, N. K. Jerinkić\",\"doi\":\"10.1109/EUROCON.2019.8861761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a standard distributed multi-agent optimization setting where n nodes (agents) in a network minimize the aggregate sum of their local convex cost functions. We present a distributed spectral-like gradient method, wherein stepsizes are node-and iteration-varying, and they are inspired by classical spectral methods from centralized optimization. Simulation examples illustrate the performance of the presented method.\",\"PeriodicalId\":232097,\"journal\":{\"name\":\"IEEE EUROCON 2019 -18th International Conference on Smart Technologies\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE EUROCON 2019 -18th International Conference on Smart Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROCON.2019.8861761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2019.8861761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个标准的分布式多智能体优化设置,其中网络中的n个节点(智能体)使其局部凸代价函数的总和最小。我们提出了一种分布式类谱梯度方法,其中步长是节点和迭代变化的,它的灵感来自于集中优化的经典谱方法。仿真实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral-like gradient method for distributed optimization
We consider a standard distributed multi-agent optimization setting where n nodes (agents) in a network minimize the aggregate sum of their local convex cost functions. We present a distributed spectral-like gradient method, wherein stepsizes are node-and iteration-varying, and they are inspired by classical spectral methods from centralized optimization. Simulation examples illustrate the performance of the presented method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信