Prism:一种用于频繁序列挖掘的原始编码方法

K. Gouda, M. Hassaan, Mohammed J. Zaki
{"title":"Prism:一种用于频繁序列挖掘的原始编码方法","authors":"K. Gouda, M. Hassaan, Mohammed J. Zaki","doi":"10.1109/ICDM.2007.33","DOIUrl":null,"url":null,"abstract":"Sequence mining is one of the fundamental data mining tasks. In this paper we present a novel approach called Prism, for mining frequent sequences. Prism utilizes a vertical approach for enumeration and support counting, based on the novel notion o/prime block encoding, which in turn is based on prime factorization theory. Via an extensive evaluation on both synthetic and real datasets, we show that Prism outperforms popular sequence mining methods like SPADE [10], PrefixSpan [6] and SPAM [2], by an order of magnitude or more.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Prism: A Primal-Encoding Approach for Frequent Sequence Mining\",\"authors\":\"K. Gouda, M. Hassaan, Mohammed J. Zaki\",\"doi\":\"10.1109/ICDM.2007.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sequence mining is one of the fundamental data mining tasks. In this paper we present a novel approach called Prism, for mining frequent sequences. Prism utilizes a vertical approach for enumeration and support counting, based on the novel notion o/prime block encoding, which in turn is based on prime factorization theory. Via an extensive evaluation on both synthetic and real datasets, we show that Prism outperforms popular sequence mining methods like SPADE [10], PrefixSpan [6] and SPAM [2], by an order of magnitude or more.\",\"PeriodicalId\":233758,\"journal\":{\"name\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2007.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

序列挖掘是数据挖掘的基本任务之一。在本文中,我们提出了一种新的方法,称为Prism,用于挖掘频繁序列。Prism利用垂直方法进行枚举和支持计数,该方法基于新颖的0 /素数块编码概念,而该概念又基于素数分解理论。通过对合成和真实数据集的广泛评估,我们表明Prism优于流行的序列挖掘方法,如SPADE [10], PrefixSpan[6]和SPAM[2],高出一个数量级或更多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prism: A Primal-Encoding Approach for Frequent Sequence Mining
Sequence mining is one of the fundamental data mining tasks. In this paper we present a novel approach called Prism, for mining frequent sequences. Prism utilizes a vertical approach for enumeration and support counting, based on the novel notion o/prime block encoding, which in turn is based on prime factorization theory. Via an extensive evaluation on both synthetic and real datasets, we show that Prism outperforms popular sequence mining methods like SPADE [10], PrefixSpan [6] and SPAM [2], by an order of magnitude or more.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信