一种用于工业仪表检测的粗变精方法及其应用

Li Fang, Junnan Wang, R. Xiong
{"title":"一种用于工业仪表检测的粗变精方法及其应用","authors":"Li Fang, Junnan Wang, R. Xiong","doi":"10.1109/ARSO.2016.7736284","DOIUrl":null,"url":null,"abstract":"This paper introduces a coarse-to-fine approach for industrial meter detection. This work has two key contributions. First, our method describes a two-level cascaded regressor to directly regress the industrial meter's parameter representation with normalizing target images to the same pose and scale, avoiding searching in multi-scale space with sliding windows. Second, after normalization, our method proposes a post verifier to largely decrease the false positive rate while keeping the true positive rate relatively high. Considering real-time performance, our method runs at 15 frames/s without multi-thread acceleration, which is essential for practical application. Evaluating with various on-site data, this approach achieves 97.5% hit rate while keeping the false positive rate below 1.35%. What's more, when applying this detection method to meter reading, the accuracy of digits reading achieves 95.5%, and the accuracy of pointer indicator detection achieves 95.6%, while the average error of estimated pointer indicator reading is limited to 6.6% normalized by measure range. Our coarse-to-fine approach shows promising prospect in practical applications.","PeriodicalId":403924,"journal":{"name":"2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A coarse-to-fine approach for industrial meter detection and its application\",\"authors\":\"Li Fang, Junnan Wang, R. Xiong\",\"doi\":\"10.1109/ARSO.2016.7736284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a coarse-to-fine approach for industrial meter detection. This work has two key contributions. First, our method describes a two-level cascaded regressor to directly regress the industrial meter's parameter representation with normalizing target images to the same pose and scale, avoiding searching in multi-scale space with sliding windows. Second, after normalization, our method proposes a post verifier to largely decrease the false positive rate while keeping the true positive rate relatively high. Considering real-time performance, our method runs at 15 frames/s without multi-thread acceleration, which is essential for practical application. Evaluating with various on-site data, this approach achieves 97.5% hit rate while keeping the false positive rate below 1.35%. What's more, when applying this detection method to meter reading, the accuracy of digits reading achieves 95.5%, and the accuracy of pointer indicator detection achieves 95.6%, while the average error of estimated pointer indicator reading is limited to 6.6% normalized by measure range. Our coarse-to-fine approach shows promising prospect in practical applications.\",\"PeriodicalId\":403924,\"journal\":{\"name\":\"2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARSO.2016.7736284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARSO.2016.7736284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种用于工业仪表检测的从粗到精的方法。这项工作有两个关键贡献。首先,我们的方法描述了一个两级联回归器,通过将目标图像归一化到相同的姿态和尺度,直接回归工业仪表的参数表示,避免了在多尺度空间中使用滑动窗口进行搜索。其次,在归一化之后,我们的方法提出了一个后验证器,在保持较高真阳性率的同时大大降低了假阳性率。考虑到实时性能,我们的方法在没有多线程加速的情况下以15帧/秒的速度运行,这对实际应用至关重要。通过对现场各种数据的评估,该方法达到了97.5%的准确率,同时将误报率控制在1.35%以下。将该检测方法应用于抄表时,数字读数准确率达到95.5%,指针指标检测准确率达到95.6%,经量程归一化后,指针指标估计读数的平均误差限制在6.6%。从粗到精的方法在实际应用中具有广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A coarse-to-fine approach for industrial meter detection and its application
This paper introduces a coarse-to-fine approach for industrial meter detection. This work has two key contributions. First, our method describes a two-level cascaded regressor to directly regress the industrial meter's parameter representation with normalizing target images to the same pose and scale, avoiding searching in multi-scale space with sliding windows. Second, after normalization, our method proposes a post verifier to largely decrease the false positive rate while keeping the true positive rate relatively high. Considering real-time performance, our method runs at 15 frames/s without multi-thread acceleration, which is essential for practical application. Evaluating with various on-site data, this approach achieves 97.5% hit rate while keeping the false positive rate below 1.35%. What's more, when applying this detection method to meter reading, the accuracy of digits reading achieves 95.5%, and the accuracy of pointer indicator detection achieves 95.6%, while the average error of estimated pointer indicator reading is limited to 6.6% normalized by measure range. Our coarse-to-fine approach shows promising prospect in practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信