Chen Zhang, Di Wu, Jiayu Sun, Guangyu Sun, Guojie Luo, J. Cong
{"title":"基于深度流水线FPGA集群的节能CNN实现","authors":"Chen Zhang, Di Wu, Jiayu Sun, Guangyu Sun, Guojie Luo, J. Cong","doi":"10.1145/2934583.2934644","DOIUrl":null,"url":null,"abstract":"Recently, FPGA-based CNN accelerators have demonstrated superior energy efficiency compared to high-performance devices like GPGPUs. However, due to the constrained on-chip resource and many other factors, single-board FPGA designs may have difficulties in achieving optimal energy efficiency. In this paper we present a deeply pipelined multi-FPGA architecture that expands the design space for optimal performance and energy efficiency. A dynamic programming algorithm is proposed to map the CNN computing layers efficiently to different FPGA boards. To demonstrate the potential of the architecture, we built a prototype system with seven FPGA boards connected with high-speed serial links. The experimental results on AlexNet and VGG-16 show that the prototype can achieve up to 21x and 2x energy efficiency compared to optimized multi-core CPU and GPU implementations, respectively.","PeriodicalId":142716,"journal":{"name":"Proceedings of the 2016 International Symposium on Low Power Electronics and Design","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"183","resultStr":"{\"title\":\"Energy-Efficient CNN Implementation on a Deeply Pipelined FPGA Cluster\",\"authors\":\"Chen Zhang, Di Wu, Jiayu Sun, Guangyu Sun, Guojie Luo, J. Cong\",\"doi\":\"10.1145/2934583.2934644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, FPGA-based CNN accelerators have demonstrated superior energy efficiency compared to high-performance devices like GPGPUs. However, due to the constrained on-chip resource and many other factors, single-board FPGA designs may have difficulties in achieving optimal energy efficiency. In this paper we present a deeply pipelined multi-FPGA architecture that expands the design space for optimal performance and energy efficiency. A dynamic programming algorithm is proposed to map the CNN computing layers efficiently to different FPGA boards. To demonstrate the potential of the architecture, we built a prototype system with seven FPGA boards connected with high-speed serial links. The experimental results on AlexNet and VGG-16 show that the prototype can achieve up to 21x and 2x energy efficiency compared to optimized multi-core CPU and GPU implementations, respectively.\",\"PeriodicalId\":142716,\"journal\":{\"name\":\"Proceedings of the 2016 International Symposium on Low Power Electronics and Design\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"183\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2934583.2934644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2934583.2934644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-Efficient CNN Implementation on a Deeply Pipelined FPGA Cluster
Recently, FPGA-based CNN accelerators have demonstrated superior energy efficiency compared to high-performance devices like GPGPUs. However, due to the constrained on-chip resource and many other factors, single-board FPGA designs may have difficulties in achieving optimal energy efficiency. In this paper we present a deeply pipelined multi-FPGA architecture that expands the design space for optimal performance and energy efficiency. A dynamic programming algorithm is proposed to map the CNN computing layers efficiently to different FPGA boards. To demonstrate the potential of the architecture, we built a prototype system with seven FPGA boards connected with high-speed serial links. The experimental results on AlexNet and VGG-16 show that the prototype can achieve up to 21x and 2x energy efficiency compared to optimized multi-core CPU and GPU implementations, respectively.