大规模数据中心跟踪日志的单元间资源使用分析

Zekun Sun, John Panneerselvam, Lu Liu, Yao Lu, Wan Tang
{"title":"大规模数据中心跟踪日志的单元间资源使用分析","authors":"Zekun Sun, John Panneerselvam, Lu Liu, Yao Lu, Wan Tang","doi":"10.1109/UCC56403.2022.00054","DOIUrl":null,"url":null,"abstract":"In recent years, modern cluster management systems are facing large volumes of workloads with complex queries. Smart processing of such workloads is essential, which requires a comprehensive understanding of large-scare data centres and the way workloads are processed in them. Understanding of workload and datacentre characteristics are also expected to contribute to the development of prediction models. The recent publication of the 2019 Google trace logs is expected to provide useful insights to researchers of energy efficient datacentres. However, insights from this trace log still remains largely uncovered. This paper presents a comprehensive analysis on the distribution of machine resource utilisation across various cells encompassed in the 2019 Google cluster trace log, uncovering various essential workload behavioural insights such as execution duration, workload task composition, CPU/memory utilisation etc. along with a longitudinal comparative analysis with two other large datasets, namely the 2018 Alibaba and 2011 Google trace logs.","PeriodicalId":203244,"journal":{"name":"2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An inter-cell resource usage analysis of large-scale datacentre trace logs\",\"authors\":\"Zekun Sun, John Panneerselvam, Lu Liu, Yao Lu, Wan Tang\",\"doi\":\"10.1109/UCC56403.2022.00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, modern cluster management systems are facing large volumes of workloads with complex queries. Smart processing of such workloads is essential, which requires a comprehensive understanding of large-scare data centres and the way workloads are processed in them. Understanding of workload and datacentre characteristics are also expected to contribute to the development of prediction models. The recent publication of the 2019 Google trace logs is expected to provide useful insights to researchers of energy efficient datacentres. However, insights from this trace log still remains largely uncovered. This paper presents a comprehensive analysis on the distribution of machine resource utilisation across various cells encompassed in the 2019 Google cluster trace log, uncovering various essential workload behavioural insights such as execution duration, workload task composition, CPU/memory utilisation etc. along with a longitudinal comparative analysis with two other large datasets, namely the 2018 Alibaba and 2011 Google trace logs.\",\"PeriodicalId\":203244,\"journal\":{\"name\":\"2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UCC56403.2022.00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCC56403.2022.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,现代集群管理系统面临着大量复杂查询的工作负载。这类工作负载的智能处理是必不可少的,这需要对大型数据中心及其处理工作负载的方式有全面的了解。对工作负载和数据中心特征的理解也有望有助于预测模型的发展。最近发布的2019年谷歌跟踪日志预计将为节能数据中心的研究人员提供有用的见解。然而,来自此跟踪日志的见解在很大程度上仍然未被发现。本文全面分析了2019年Google集群跟踪日志中包含的各个单元之间的机器资源利用率分布,揭示了各种基本的工作负载行为洞察,如执行时间、工作负载任务组成、CPU/内存利用率等,并与另外两个大型数据集(即2018年阿里巴巴和2011年Google跟踪日志)进行了纵向比较分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An inter-cell resource usage analysis of large-scale datacentre trace logs
In recent years, modern cluster management systems are facing large volumes of workloads with complex queries. Smart processing of such workloads is essential, which requires a comprehensive understanding of large-scare data centres and the way workloads are processed in them. Understanding of workload and datacentre characteristics are also expected to contribute to the development of prediction models. The recent publication of the 2019 Google trace logs is expected to provide useful insights to researchers of energy efficient datacentres. However, insights from this trace log still remains largely uncovered. This paper presents a comprehensive analysis on the distribution of machine resource utilisation across various cells encompassed in the 2019 Google cluster trace log, uncovering various essential workload behavioural insights such as execution duration, workload task composition, CPU/memory utilisation etc. along with a longitudinal comparative analysis with two other large datasets, namely the 2018 Alibaba and 2011 Google trace logs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信