在线网络性能监测的合作学习

S. B. Joseph, H. R. Loo, I. Ismail, M. N. Marsono
{"title":"在线网络性能监测的合作学习","authors":"S. B. Joseph, H. R. Loo, I. Ismail, M. N. Marsono","doi":"10.1109/MICC.2015.7725436","DOIUrl":null,"url":null,"abstract":"Motivated by the principles of decentralized in-network management (INM) for future networks, we consider the issue of information exchange among network nodes to improve network performance and scalability. INM concept gives autonomy to each network node to self-govern its behavior and participate in a distributed management in collaboration with the nodes to analyze and manage network resources. However, to ensure this interaction, exchange of network information is imperative. In this paper, we propose a cooperative learning algorithm for propagation and synchronization of network information among network nodes for online traffic classification. The results show that network nodes with sharing capability perform better with a higher average accuracy of around 6% on both Cambridge and UNIBS datasets compared to nodes without cooperative learning capability.","PeriodicalId":225244,"journal":{"name":"2015 IEEE 12th Malaysia International Conference on Communications (MICC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cooperative learning for online in-network performance monitoring\",\"authors\":\"S. B. Joseph, H. R. Loo, I. Ismail, M. N. Marsono\",\"doi\":\"10.1109/MICC.2015.7725436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the principles of decentralized in-network management (INM) for future networks, we consider the issue of information exchange among network nodes to improve network performance and scalability. INM concept gives autonomy to each network node to self-govern its behavior and participate in a distributed management in collaboration with the nodes to analyze and manage network resources. However, to ensure this interaction, exchange of network information is imperative. In this paper, we propose a cooperative learning algorithm for propagation and synchronization of network information among network nodes for online traffic classification. The results show that network nodes with sharing capability perform better with a higher average accuracy of around 6% on both Cambridge and UNIBS datasets compared to nodes without cooperative learning capability.\",\"PeriodicalId\":225244,\"journal\":{\"name\":\"2015 IEEE 12th Malaysia International Conference on Communications (MICC)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 12th Malaysia International Conference on Communications (MICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICC.2015.7725436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th Malaysia International Conference on Communications (MICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICC.2015.7725436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

受未来网络分散网内管理(INM)原则的激励,我们考虑网络节点之间的信息交换问题,以提高网络性能和可扩展性。INM概念赋予每个网络节点自主治理自身行为的自主权,并与节点协同参与分布式管理,分析和管理网络资源。然而,为了确保这种交互作用,交换网络信息是必不可少的。在本文中,我们提出了一种用于在线流量分类的网络节点间网络信息传播和同步的合作学习算法。结果表明,与不具有合作学习能力的节点相比,具有共享能力的网络节点在剑桥和UNIBS数据集上表现更好,平均准确率约为6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooperative learning for online in-network performance monitoring
Motivated by the principles of decentralized in-network management (INM) for future networks, we consider the issue of information exchange among network nodes to improve network performance and scalability. INM concept gives autonomy to each network node to self-govern its behavior and participate in a distributed management in collaboration with the nodes to analyze and manage network resources. However, to ensure this interaction, exchange of network information is imperative. In this paper, we propose a cooperative learning algorithm for propagation and synchronization of network information among network nodes for online traffic classification. The results show that network nodes with sharing capability perform better with a higher average accuracy of around 6% on both Cambridge and UNIBS datasets compared to nodes without cooperative learning capability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信