由直线程序给出的多项式的计算II稀疏分解

E. Kaltofen
{"title":"由直线程序给出的多项式的计算II稀疏分解","authors":"E. Kaltofen","doi":"10.1109/SFCS.1985.17","DOIUrl":null,"url":null,"abstract":"We develop an algorithm for the factorization of a multivariate polynomial represented by a straight-line program into its irreducible factors represented as sparse polynomials. Our algorithm is in random polynomial-time for the usual coefficient fields and outputs with controllably high probability the correct factorization. It only requires an a priori bound for the total degree of the input and over rational numbers a bound on the size of the polynomial coefficients.","PeriodicalId":296739,"journal":{"name":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Computing with polynomials given by straight-line programs II sparse factorization\",\"authors\":\"E. Kaltofen\",\"doi\":\"10.1109/SFCS.1985.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop an algorithm for the factorization of a multivariate polynomial represented by a straight-line program into its irreducible factors represented as sparse polynomials. Our algorithm is in random polynomial-time for the usual coefficient fields and outputs with controllably high probability the correct factorization. It only requires an a priori bound for the total degree of the input and over rational numbers a bound on the size of the polynomial coefficients.\",\"PeriodicalId\":296739,\"journal\":{\"name\":\"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1985.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1985.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文提出了一种将用直线程序表示的多元多项式分解为用稀疏多项式表示的不可约因子的算法。我们的算法在随机多项式时间内对通常的系数域进行分解,并以可控的高概率输出正确的因子分解。它只需要输入的总次数的先验界和有理数上多项式系数的大小的先验界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing with polynomials given by straight-line programs II sparse factorization
We develop an algorithm for the factorization of a multivariate polynomial represented by a straight-line program into its irreducible factors represented as sparse polynomials. Our algorithm is in random polynomial-time for the usual coefficient fields and outputs with controllably high probability the correct factorization. It only requires an a priori bound for the total degree of the input and over rational numbers a bound on the size of the polynomial coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信