{"title":"由直线程序给出的多项式的计算II稀疏分解","authors":"E. Kaltofen","doi":"10.1109/SFCS.1985.17","DOIUrl":null,"url":null,"abstract":"We develop an algorithm for the factorization of a multivariate polynomial represented by a straight-line program into its irreducible factors represented as sparse polynomials. Our algorithm is in random polynomial-time for the usual coefficient fields and outputs with controllably high probability the correct factorization. It only requires an a priori bound for the total degree of the input and over rational numbers a bound on the size of the polynomial coefficients.","PeriodicalId":296739,"journal":{"name":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Computing with polynomials given by straight-line programs II sparse factorization\",\"authors\":\"E. Kaltofen\",\"doi\":\"10.1109/SFCS.1985.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop an algorithm for the factorization of a multivariate polynomial represented by a straight-line program into its irreducible factors represented as sparse polynomials. Our algorithm is in random polynomial-time for the usual coefficient fields and outputs with controllably high probability the correct factorization. It only requires an a priori bound for the total degree of the input and over rational numbers a bound on the size of the polynomial coefficients.\",\"PeriodicalId\":296739,\"journal\":{\"name\":\"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1985.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1985.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computing with polynomials given by straight-line programs II sparse factorization
We develop an algorithm for the factorization of a multivariate polynomial represented by a straight-line program into its irreducible factors represented as sparse polynomials. Our algorithm is in random polynomial-time for the usual coefficient fields and outputs with controllably high probability the correct factorization. It only requires an a priori bound for the total degree of the input and over rational numbers a bound on the size of the polynomial coefficients.